The current status of the

COHERE

Experiment Diana Parno Carnegie Mellon University Magnificent CEvNS 2024, Valencia, Spain

Diego Delso, CC BY-SA 4.0

- Experimentalist's guide to CEvNS
- COHERENT basics and CEvNS summary
- Backgrounds and flux normalization
- Future plans
- Bonus physics: inelastics & dark matter

Experimentalist's Guide to CEvNS

- Coherent Elastic v-Nucleus Scattering
 - Predicted in Standard Model in 1974
 - Not observed until 2017 (by COHERENT)

- v interacts coherently and elastically with entire nucleus
 - Cross-section enhancement
 - No nuclear excitation
 - Unlocks exciting physics!

Experimentalist's Guide to CEvNS

• Coherent Elastic v-Nucleus Scattering

Physics

negie Mellon University

- Predicted in Standard Model in 1974
- Not observed until 2017 (by COHERENT)

- v interacts coherently and elastically with entire nucleus
 - Cross-section enhancement
 - No nuclear excitation
 - Unlocks exciting physics!

Our suggestion may be an act of hubris, because the inevitable constraints of interaction rate, resolution, and background pose grave experimental difficulties for elastic neutrino-nucleus scattering.

- D.Z. Freedman, Phys. Rev. D 9 (1974) 1389

CEvNS Detection Recipe

• $E_v \lesssim 50$ MeV to permit coherent interaction

CEvNS Detection Recipe

- $E_v \lesssim 50$ MeV to permit coherent interaction
- Sensitivity to small cross section ~ 10⁻³⁹ cm²
 - Low backgrounds
 - Lots of neutrinos

Physics

Carnegie Mellon University

Barbeau, Efremenko, and Scholberg, Ann. Rev. Nucl. Part. Sci. 73 (2023) 41

((C) HERENT

CEvNS Detection Recipe

- $E_v \lesssim 50$ MeV to permit coherent interaction
- Sensitivity to small cross section ~ 10⁻³⁹ cm²
 - Low backgrounds
 - Lots of neutrinos

Physics

Carnegie Mellon University

Sensitivity to tiny nuclear recoils

Barbeau, Efremenko, and Scholberg, Ann. Rev. Nucl. Part. Sci. 73 (2023) 41

Diana Parno -- COHERENT Overview

- Provides neutrons for materials science, life science, basic physics research
- Proton beam strikes liquid Hg target at ~1 GeV

- Provides neutrons for materials science, life science, basic physics research
- Proton beam strikes liquid Hg target at ~1 GeV

- Provides neutrons for materials science, life science, basic physics research
- Proton beam strikes liquid Hg target at ~1 GeV

- Provides neutrons for materials science, life science, basic physics research
- Proton beam strikes liquid Hg target at

- Provides neutrons for materials science, life science, basic physics research
- Proton beam strikes liquid Hg target at

- Provides neutrons for materials science, life science, basic physics research
- Proton beam strikes liquid Hg target at

- Provides neutrons for materials science, life science, basic physics research
- Proton beam strikes liquid Hg target at

Spallation Neutron + Neutrino Source (COHERENT

Energy

COHERENT, Phys. Rev. D 106 (2022) 032003

Spallation Neutron + Neutrino Source (COHERENT

COHERENT, Phys. Rev. D 106 (2022) 032003

Diana Parno -- COHERENT Overview

Pulsed beam

- 2.28 x 10⁻⁵ duty factor, 60 Hz repetition rate
- Simple to subtract steady-state backgrounds

Pulsed beam

- 2.28 x 10⁻⁵ duty factor, 60 Hz repetition rate
- Simple to subtract steady-state backgrounds

Basement location with >20 m gravel+concrete fill

Significant reduction of beam-related neutrons

Eventsed beam

- 2.28 x 10⁻⁵ duty factor, 60 Hz repetition rate
- Simple to subtract steady-state backgrounds
- Basement location with >20 m gravel+concrete fill
 - Significant reduction of beam-related neutrons
- Proton power upgrade underway
 - Average beam current: 26 mA \rightarrow 38 mA
 - Average beam energy: 0.97 GeV → 1.3 GeV

Pulsed beam

- 2.28 x 10⁻⁵ duty factor, 60 Hz repetition rate
- Simple to subtract steady-state backgrounds

- Significant reduction of beam-related neutrons
- Proton power upgrade underway
 - Average beam current: 26 mA \rightarrow 38 mA
 - Average beam energy: 0.97 GeV → 1.3 GeV

CEvNS on Csi COHERENT, PRL 129 (2022) 081801

CEvNS on Csi COHERENT, PRL 129 (2022) 081801

CEvNS on Cs COHERENT, PRL 129 (2022) 081801

0.75 0.8 0.85 0.9

CEvNS on Ge

CEvNS on Cs COHERENT, PRL 129 (2022) 081801

energy (keVee)

SNS Backgrounds

- Steady-state: Cosmic-ray muons, 511-keV γ s, environmental radioactivity
- Beam-related neutrons
 - Measured in several locations with multiple detectors
 - Flux depends strongly on location in Neutrino Alley

Interactio Green R⁴²D₂O⁵⁰: Neutrino ¹Fluxservable Energy (MeV)

- Neutrino flux is a shared ~10% systematic across all
 v-interaction measurements!
- Use v_e + d → p + p + e⁻ reaction to benchmark actual SNS v flux
 - Theoretical cross-section uncertainty 2-3%
- With two modules, control CC-O backgrounds and detector response

50

Physics **PMTs** COH-R²D₂O Status Carnegie Mellon University Module 1 deployed summer 2023! Top panel of muon veto Module 2 under construction 16 Pb shielding • PMTs tested (wet+dry) 14 Statistical Precision (%) 12 • Deployment planned 10 this summer 2 3 5 Ton × SNS-Years assembly, odule 2 Module

_ED calibration system

Module 1

PMT test, Module 2

Cable a

Physics Coming Soon: COH-NalvETe

- 2425 kg of Nal crystals, partially deployed!
 - Plan: dual-gain running for both CEvNS and CC measurements

Carnegie Mellon University

- Commissioning and analysis underway in CEvNS mode
- More modules to be deployed Summer 2024

((C) HERENT

Diana Parno -- The current status of the COHERENT experiment

Coming Soon: Next-Generation LAr

- While COH-Ar-10 final dataset is being analyzed (22 kg, 2 PMTs)...
- ...A new LAr detector with 600kg fiducial volume and 122 PMTs is under construction in South Korea and the USA!

Physics

Carnegie Mellon University

Diana Parno -- The current status of the COHERENT experiment

Coming Soon: Next-Generation LAr

While COH-Ar-10 final dataset is being analyzed (22 kg, 2 PMTs)...

Physics

Carnegie Mellon University

 ...A new LAr detector with 600kg fiducial volume and 122 PMTs is under construction in South Korea and the USA!

Diana Parno -- The current status of the COHERENT experiment

Coming Soon: Next-Generation LAr

• While COH-Ar-10 final dataset is being analyzed (22 kg, 2 PMTs)...

Physics

Carnegie Mellon University

 ...A new LAr detector with 600kg fiducial volume and 122 PMTs is under construction in South Korea and the USA!

Diana Parno -- The current status of the COHERENT experiment

Physics Planning: Cryo-Csl

Original CsI results limited by Cherenkov radiation in PMT quartz window

Project Proposa

- Proposed next-generation detector:
 - 10 kg undoped CsI at ~40K with SiPMs
 - First proof-of-concept: Ding et al., Eur. Phys. J. C 82, 344 (2022)
 - Physics reach: Phys. Rev. D 109 092005 (2024)

Physics Planning: Cryo-Csl

- ((C) HERENT
- Original CsI results limited by Cherenkov radiation in PMT quartz window
- Proposed next-generation detector:
 - 10 kg undoped CsI at ~40K with SiPMs
 - First proof-of-concept: Ding et al., Eur. Phys. J. C 82, 344 (2022)
 - Physics reach: Phys. Rev. D 109 092005 (2024)

Project Proposa

Physics Planning: Cryo-Csl

Original CsI results limited by Cherenkov radiation in PMT quartz window

Cosmology

LNA-Dait

(assuming reactor CEvNS

10

m_v (MeV)

constraints)

COH-CNOCSI-1 (30 K9-VI) (20)

- Proposed next-generation detector:
 - 10 kg undoped CsI at ~40K with SiPMs
 - First proof-of-concept: Ding et al., Eur. Phys. J. C 82, 344 (2022)
 - Physics reach: Phys. Rev. D 109 092005 (2024)

10²

Bonus Physics: Inelastics

• SNS neutrino energies match supernova neutrinos and probe nuclear physics!

Diana Parno -- The current status of the COHERENT experiment

Bonus Physics: Inelastics

• SNS neutrino energies match supernova neutrinos and probe nuclear physics!

NU/THOR v-induced fission

Talk Friday Tyler Johnson

Physics **Bonus Physics: Inelastics**

SNS neutrino energies match supernova neutrinos and probe nuclear physics!

AU/THOR v-induced fission

Carnegie Mellon University

 ν -induced n from ν +Pb

Diana Parno -- The current status of the COHERENT experiment

((C SHERENT

Physics **Bonus Physics: Inelastics**

SNS neutrino energies match supernova neutrinos and probe nuclear physics!

AU/THOR v-induced fission

Carnegie Mellon University

Follow-up Pb glass detector

((C SHERENT

Physics **Bonus Physics: Inelastics**

Carnegie Mellon University

- ((C) HERENT
- SNS neutrino energies match supernova neutrinos and probe nuclear physics!

Diana Parno -- The current status of the COHERENT experiment

Bonus Physics Inelastics

• SNS neutrino energies match supernova neutrinos and probe nuclear physics!

Diana Parno -- The current status of the COHERENT experiment

((C) HERENT

Bonus Physics Bonus Physics: Dark Matter

- ((C) HERENT
- SNS delivers more than 1.58 × 10²³ protons to the Hg target each year
 - Tremendous opportunity for producing vector-portal dark matter!

Physics **Bonus Physics: Dark Matter**

Carnegie Mellon University

- ((C) HERENT
- SNS delivers more than 1.58×10^{23} protons to the Hg target each year
 - Tremendous opportunity for producing vector-portal dark matter!

Diana Parno -- The current status of the COHERENT experiment

The COHERENT Collaboration

Diana Parno -- The current status of the COHERENT experiment

- The SNS at Oak Ridge National Lab is a powerful tool for CEvNS and other lowenergy neutrino interactions
 - Current and planned upgrades increase its potential

- The SNS at Oak Ridge National Lab is a powerful tool for CEvNS and other lowenergy neutrino interactions
 - Current and planned upgrades increase its potential
- Studies of beam-related neutrons and neutrino flux are bringing them under control

Conclusion

- The SNS at Oak Ridge National Lab is a powerful tool for CEvNS and other lowenergy neutrino interactions
 - Current and planned upgrades increase its potential
- Studies of beam-related neutrons and neutrino flux are bringing them under control
- COHERENT has seen CEvNS on three nuclear targets (CsI, Ar, Ge) with Na taking data
 - CsI new detector proposed
 - Ar
 - Remaining COH-Ar-1 dataset under analysis.
 - New detector under construction
 - Ge more data to be acquired this summer

Conclusion

- The SNS at Oak Ridge National Lab is a powerful tool for CEvNS and other lowenergy neutrino interactions
 - Current and planned upgrades increase its potential
- Studies of beam-related neutrons and neutrino flux are bringing them under control
- COHERENT has seen CEvNS on three nuclear targets (CsI, Ar, Ge) with Na taking data
 - CsI new detector proposed
 - Ar
 - Remaining COH-Ar-1 dataset under analysis.
 - New detector under construction
 - Ge more data to be acquired this summer
- Active, competitive DM searches and inelastics measurements

Conclusion

Thank you!

- The SNS at Oak Ridge National Lab is a powerful tool for CEvNS and other lowenergy neutrino interactions
 - Current and planned upgrades increase its potential
- Studies of beam-related neutrons and neutrino flux are bringing them under control
- COHERENT has seen CEvNS on three nuclear targets (CsI, Ar, Ge) with Na taking data
 - CsI new detector proposed
 - Ar
 - Remaining COH-Ar-1 dataset under analysis.
 - New detector under construction
 - Ge more data to be acquired this summer
- Active, competitive DM searches and inelastics measurements

Diana Parno -- The current status of the COHERENT experiment

SNS Schedule Until Sep. 2027

								FY24						
							24	Apr-24	May-24	Jun-24	Jul-24	Aug-24	Sep-24	
											PPU 2MW Target Ramp to 1.7 MW @ 1.3 GeV for 1250 hr KPP			
	FY25													
	Oct-24	Nov-24	Dec-24	Jan-25	Feb-25	Mar-25	Apr-25	May-25	Jun-2	25 Jul-	25	Aug-25	Sep-25	
SNS			FY25A		1.7 MW Operations			FY25B			1.8 MW Operations			
	FY26													
	Oct-25	Nov-25	Dec-25	Jan-26	Feb-26	Mar-26	Apr-26	May-26	Jun-2	.6 Jul-	26	Aug-26	Sep-26	
SNS	1.8 MW Op	1.8 MW Operations		FY26A		1.9 MW Operations				FY26B		1.9 MW Operations		
	FY27													
	Oct-26	Nov-26	Dec-26	Jan-27	Feb-27	Mar-27	Apr-27	May-27	Jun-2	27 Jul-	27	Aug-27	Sep-27	
SNS	2MW Operations		FY27A		2MW Operations					FY27B		2MW Operations		

((C) HERENT

Diana Parno -- The current status of the COHERENT experiment

Image from Ken Herwig

- Rotating wheel of tungsten wedges
- Receives ¹/₄ proton pulses (15 Hz)
 - First target station gets ³/₄ proton pulses (45 Hz)
- Optimized to produce cold neutrons

