

UNIVERSITY of HAWAI'I®

Optimizing the directional detection of low-energy electron recoils

Majd Ghrear <u>majd@hawaii.edu</u>

Department of Physics and Astronomy University of Hawai'i

Motivation

Background:

- Our group is developing gaseous detectors of nuclear and electron recoils, uniquely capable of providing 3D recoil direction
- 40L thesis detector

(https://indico.cern.ch/event/1358339/contributions/5899430/)

• Exploring deploying detectors at SNS Oak Ridge

Directionality is desirable:

- Can provide valuable information in discerning new physics from CEvNS experiments (Abdullah et. al. <u>2003.11510</u>, Sierra et. al. <u>2103.10857</u>)
- Solar Neutrino Spectroscopy (Lisotti, O'hare et. al. <u>2404.03690</u>)
- DM searches / pointing / etc. (Vahsen, O'hare, Loomba <u>2102.04596</u>)

Directional Recoil Detection in Gas TPCs

- Gas TPC are the only candidate technology for *directional* detection of low energy (order 1-100 keV) recoils.
- Present two techniques for optimizing directionality:
 - Predicting the angular resolution of <u>electrons</u> in gas
 - 2. Probabilistic deep learning for 3D direction

Focus on electrons (more complex) here

Angular Resolution of Electron Recoils

- Two first-order effects influencing angular resolution:
 - Multiple scattering of the electron (or nucleus)
 - Effective point resolution of the detector (diffusion + readout resolution)
- Multiple scattering dominates at longer fit length, point resolution dominates at shorter fit lengths.

Degrad simulation of a 150 keV electron recoil in He : CF4.

Multiple scattering

PDG Review of Particle Physics "Passage of Particles Through Matter"

Multiple scattering through small angles

$$\sigma_{\psi}^{\text{plane}} = \frac{z}{\sqrt{3}} \frac{13.6 \text{MeV}}{\beta c p} \sqrt{\frac{x}{X_o}} \left[1 + 0.038 ln(\frac{xz^2}{X_o \beta^2}) \right]$$

This formula is actually a fit for simulations of heavy particles. It does not work for electrons.

Following the same procedure for electron we obtain.

$$\sigma^{\rm plane}_{\psi,\rm MS} = \frac{1}{\sqrt{3}} \frac{13.1 \pm 1.5 {\rm MeV}}{\beta cp} \sqrt{\frac{x}{X_o}}. \label{eq:scalar}$$

Effective Point Resolution

- The Multiple Scattering formula alone is insufficient, need to consider effective point resolution for a more complete picture
- Conversion from point resolution to angular resolution

Angular resolution $\sigma_{\psi,\mathrm{PR}}^{\mathrm{plane}} = \frac{\sqrt{12}\sigma_{x,y,z}}{x\sqrt{N}}.$ Effective point resolution: Diffusion and readout

• We combine the point resolution and multiple scattering effects in quadrature

$$\sigma_{\psi,\text{total}}^{\text{plane}} = \sqrt{a^2 x + b^2 x^{-3}}, \qquad a \equiv \frac{1}{\sqrt{3}} \frac{13.1 \text{MeV}}{\beta c p \sqrt{X_o}} \quad b \equiv \sigma_{x/y/z} \sqrt{\frac{12W}{dE/dx}}$$

3-D tracking in a miniature time projection chamber https://doi.org/10.1016/j.nima.2015.03.009

Results

70 keV electron recoils in 70% He 30% CO2

- The optimal track length is well predicted
- The angular resolution near the optimal length is well predicted

This provides a quick way to estimate the angular resolution of electron recoils as

- This formula can be used for design optimization.
- We are working on experimental validation

Probabilistic Deep Learning for 3D Direction

Simulations:

- 10⁶ electron recoils at 40,45,50 keV using DEGRAD
- 70% He : 30% CO₂ at 20 Celsius and 760 Torr
- Recoils are generated isotropically with known true direction
- Diffusion drawn uniformly between 160-466 µm
- Binned into (500 µm)³ voxels

(a) Raw Degrad simulation

(b) Processed simulation

(c) Voxilized simulation

Deep probabilistic 3D angular regression

Architecture:

- Every event has 1,728,000 features.
- In a typical event, ~0.01% of the features are non-zero
- Sparsity is common in highly-segmented 3D data and it is

essential to take advantage of it

 Dual-head architecture for heteroscedastic regression

Deep probabilistic 3D angular regression

Loss function

- Derived from the Kent / von Mises-Fisher distribution
- Requires approximations to stabilize training
- This is the first probabilistic deep learning framework for predicting 3D directions

Deep probabilistic 3D angular regression

This framework solves 3 problems at once:

- It determines the Head/Tail
- It significantly improves angular resolution
- It estimates uncertainty accurately
 - can be leveraged to remove high-uncertainty events

https://arxiv.org/abs/2403.15949

Accepted by Machine Learning: Science and technology

40 keV electron recoils in He:Co2

Conclusion

- Directional detection is challenging at low energies!
- We developed two techniques to maximize directionality
 - A formula which predicts the best achievable angular resolution given recoil energy, gas properties, and the effective point resolution (paper in preparation)
 - A probabilistic deep learning method for fitting complex 3D recoil tracks (paper accepted)

Ongoing: Experimental Validation

10 20

300 250 200 ^ຂົ້ 150

Gammas / X-rays		Betas / Posi	trons (+) / Electro	ns* Alphas	Alphas		
E (keV)	%	E (keV, Ave)	%	E (keV)	%	%	
		196 933	100 100				
	-12	·		300			
	-10 -8			200 8 22 150			
	6 4			50			
50 60 70	0 250			-12 0 -10	10 20	30 40 50 Column	
	200 8 150			-8 -6			

UNIVERSITY of HAWAI'I®

Thank you!

majd@hawaii.edu