COHERENT bounds on light mediator models

Istituto Nazionale di Fisica Nucleare Laboratori Nazionali del Gran Sasso Christoph Andreas Ternes June 12th 2024

Standard model neutrinos

Neutrinos were predicted to explain the continuity of betaspectra in 1930

Each charged lepton has a flavor neutrinos associated to them

Neutrinos belong to SU(2) doublets and are massless and neutral

We need physics beyond the standard model

What are dark matter and dark energy?

Baryon asymmetry of the universe?

WHERE IS THE ANTIMATTER?

Neutrino oscillations?

Neutrino oscillations

Valencia - Global Fit, 2006.11237, JHEP 2021

See also: Bari - 2107.00532, PRD 2021 See also: NuFit - 2111.03086, Universe 2021

Light vector mediators

Some extensions of the Standard Model have new gauge bosons

Depending on the model the charges can be different for quarks and leptons

$$\mathcal{L}_{Z'}^{V} = -Z'_{\mu} \left[\sum_{\ell=e,\mu,\tau} g_{Z'}^{\nu_{\ell}V} \overline{\nu_{\ell L}} \gamma^{\mu} \nu_{\ell L} + \sum_{q=u,d} g_{Z'}^{qV} \overline{q} \gamma^{\mu} q \right]$$

Light vector mediators

Model	Q'_u	Q_d'	Q'_e	Q'_{μ}	Q'_{τ}
universal	1	1	1	1	1
B-L	1/3	1/3	-1	-1	-1
$B - 3L_e$	1/3	1/3	-3	0	0
$B - 3L_{\mu}$	1/3	1/3	0	-3	0
$B - 2L_e - L_\mu$	1/3	1/3	-2	-1	0
$B - L_e - 2L_\mu$	1/3	1/3	-1	-2	0
$B_y + L_\mu + L_\tau$	1/3	1/3	0	1	1
$L_e - L_\mu$	0	0	1	-1	0
$L_e - L_{\tau}$	0	0	1	0	-1
$L_{\mu} - L_{\tau}$	0	0	0	1	-1

We consider U(1)' models that are anomaly-free (except the universal one) if the SM is extended with three right-handed neutrinos

Possible explanation for neutrino masses and mixing

No direct coupling to nuclei for the L_{α} - L_{β} models

Coherent elastic neutrino nucleus scattering

In the standard model we have

$$\frac{d\sigma_{\nu_{\ell}-\mathcal{N}}}{dT_{\rm nr}}(E,T_{\rm nr}) = \frac{G_{\rm F}^2 M}{\pi} \left(1 - \frac{MT_{\rm nr}}{2E^2}\right) (Q_{\ell,\rm SM}^V)^2$$

with the weak charge

$$Q_{\ell,\text{SM}}^{V} = \begin{bmatrix} g_{V}^{p}(\nu_{\ell}) ZF_{Z}(|\vec{q}|^{2}) + g_{V}^{n}NF_{N}(|\vec{q}|^{2}) \end{bmatrix}$$
$$g_{V}^{p}(\nu_{e}) = 0.0401, \qquad g_{V}^{p}(\nu_{\mu}) = 0.0318, \qquad g_{V}^{n} = -0.509$$

The cross section scales with the neutron number squared

The form factors describe the loss of coherence for large momentum transfer

Coherent elastic neutrino nucleus scattering

In the standard model we have

$$\frac{d\sigma_{\nu_{\ell}-\mathcal{N}}}{dT_{\rm nr}}(E,T_{\rm nr}) = \frac{G_{\rm F}^2 M}{\pi} \left(1 - \frac{MT_{\rm nr}}{2E^2}\right) (Q_{\ell,\rm SM}^V)^2 \qquad Q_{\ell,\rm SM}^V = \left[g_V^p(\nu_{\ell}) ZF_Z(|\vec{q}|^2) + g_V^n NF_N(|\vec{q}|^2)\right]$$

When adding new vector mediators we need to replace

$$Q_{\ell,\text{SM+V}}^{V} = Q_{\ell,\text{SM}}^{V} + \frac{g_{Z'}^{2}Q_{\ell}'}{\sqrt{2}G_{F}\left(|\vec{q}|^{2} + M_{Z'}^{2}\right)} \left[\left(2Q_{u}' + Q_{d}'\right)ZF_{Z}(|\vec{q}|^{2}) + \left(Q_{u}' + 2Q_{d}'\right)NF_{N}(|\vec{q}|^{2}) \right]$$

or calculate the loop corrections

$$\begin{pmatrix} \frac{d\sigma}{dT_{\rm nr}} \end{pmatrix}_{L_{\alpha}-L_{\beta}}^{\nu_{\ell}-\mathcal{N}} (E,T_{\rm nr}) = \frac{G_F^2 M}{\pi} \left(1 - \frac{MT_{\rm nr}}{2E^2} \right) \\ \times \left\{ \left[g_V^p \left(\nu_{\ell} \right) + \frac{\sqrt{2}\alpha_{\rm EM} g_{Z'}^2 \left(\delta_{\ell\alpha} \varepsilon_{\beta\alpha}(|\vec{q}|) + \delta_{\ell\beta} \varepsilon_{\alpha\beta}(|\vec{q}|) \right)}{\pi G_F \left(|\vec{q}|^2 + M_{Z'}^2 \right)} \right] ZF_Z(|\vec{q}|^2) + g_V^n NF_N(|\vec{q}|^2) \right\}^2 \qquad \varepsilon_{\beta\alpha}(|\vec{q}|) = \int_0^1 x(1-x) \ln \left(\frac{m_{\beta}^2 + x(1-x)|\vec{q}|^2}{m_{\alpha}^2 + x(1-x)|\vec{q}|^2} \right) dx$$

COHERENT

COHERENT

Calculation is more complicated

$$N_{i}^{\text{CE}\nu\text{NS}} = N(\mathcal{N}) \int_{T_{\text{nr}}^{i}}^{T_{\text{nr}}^{i+1}} dT_{\text{nr}} A(T_{\text{nr}}) \int_{0}^{T_{\text{nr}}^{\prime\text{max}}} dT_{\text{nr}}' R(T_{\text{nr}}, T_{\text{nr}}') \int_{E_{\min}(T_{\text{nr}}')}^{E_{\max}} dE \sum_{\nu = \nu_{e}, \nu_{\mu}, \bar{\nu}_{\mu}} \frac{dN_{\nu}}{dE} (E) \frac{d\sigma_{\nu - \mathcal{N}}}{dT_{\text{nr}}} (E, T_{\text{nr}}') \int_{E_{\min}(T_{\text{nr}}')}^{E_{\max}} dE \sum_{\nu = \nu_{e}, \nu_{\mu}, \bar{\nu}_{\mu}} \frac{dN_{\nu}}{dE} (E) \frac{d\sigma_{\nu - \mathcal{N}}}{dT_{\text{nr}}} (E, T_{\text{nr}}') \int_{E_{\min}(T_{\text{nr}}')}^{E_{\max}} dE \sum_{\nu = \nu_{e}, \nu_{\mu}, \bar{\nu}_{\mu}} \frac{dN_{\nu}}{dE} (E) \frac{d\sigma_{\nu - \mathcal{N}}}{dT_{\text{nr}}} (E, T_{\text{nr}}') \int_{E_{\min}(T_{\text{nr}}')}^{E_{\max}} dE \sum_{\nu = \nu_{e}, \nu_{\mu}, \bar{\nu}_{\mu}} \frac{dN_{\nu}}{dE} (E) \frac{d\sigma_{\nu - \mathcal{N}}}{dT_{\text{nr}}} (E, T_{\text{nr}}') \int_{E_{\min}(T_{\text{nr}}')}^{E_{\max}} \frac{dP}{dE} \sum_{\nu = \nu_{e}, \nu_{\mu}, \bar{\nu}_{\mu}} \frac{dN_{\nu}}{dE} (E) \frac{d\sigma_{\nu - \mathcal{N}}}{dT_{\text{nr}}} (E, T_{\text{nr}}') \int_{E_{\max}(T_{\text{nr}}')}^{E_{\max}} \frac{dP}{dE} \sum_{\nu = \nu_{e}, \nu_{\mu}, \bar{\nu}_{\mu}} \frac{dN_{\nu}}{dE} (E) \frac{d\sigma_{\nu - \mathcal{N}}}{dT_{\text{nr}}} (E, T_{\text{nr}}') \int_{E_{\max}(T_{\text{nr}}')}^{E_{\max}} \frac{dP}{dE} \sum_{\nu = \nu_{e}, \nu_{\mu}, \bar{\nu}_{\mu}} \frac{dP}{dE} \sum_{\nu = \nu_{e}, \nu_{\mu}, \nu_{\mu}} \frac{dP}{dE} \sum_{\nu = \nu_{e}, \nu_{\mu}, \nu_{\mu}$$

Detector effects (resolution, efficiency, quenching) must be taken into account when calculating the expected number of events

In the statistical analysis we must consider several sources of background and associated systematic uncertainties

$$\chi_{\text{CsI}}^2 = 2\sum_{i=1}^9 \sum_{j=1}^{11} \left[\sum_{z=1}^4 (1+\eta_z) N_{ij}^z - N_{ij}^{\text{exp}} + N_{ij}^{\text{exp}} \ln\left(\frac{N_{ij}^{\text{exp}}}{\sum_{z=1}^4 (1+\eta_z) N_{ij}^z}\right) \right] + \sum_{z=1}^4 \left(\frac{\eta_z}{\sigma_z}\right)^2$$

Atzori Corona et al, 2202.11002, JHEP 2022 Atzori Corona et al, 2205.09484, JHEP 2022

COHERENT

Data included CEvNS on CsI scintillating crystal 306 ± 20 events, > 11σ consistent with SM Data included

CEvNS on liquid argon

Still collecting data, more data expected to come soon

COHERENT, 2110.07730, PRL 2022

COHERENT, 2003.10630, PRL 2021

Event rates

Atzori Corona et al, 2202.11002, JHEP 2022

Event rates

Atzori Corona et al, 2202.11002, JHEP 2022

Exclusion limits for selected models

Very popular light vector mediator model with a lot of literature

COHERENT data exclude the preferred region from g-2

Exclusion limits for selected models

The bounds on the other models are of similar strength

Sometimes other bounds apply, which can be stronger or weaker than COHERENT bounds

Exclusion limits for selected models

For the L_{α} - L_{β} models the couplings are generated only at loop level and the bounds become weaker

COHERENT can not exclude the preferred region from g-2

Conclusions

Neutrino scattering experiments provide powerful tools for SM tests and BSM searches

COHERENT data can be used to bound the parameter space for many classes of light vector mediator models

For models which couple only to leptons COHERENT bounds are not competitive with other probes

Exclusion limits from DMDD experiments

Exclusion limits from DMDD experiments

Atzori Corona et al, 2202.11002, JHEP 2022 De Romeri, Papoulias, Ternes, 2402.05506, JHEP 2024