

Status of the CONUS+ experiment

Kaixiang Ni – On behalf of the CONUS+ collaboration

Magnificent CEvNS 2024

University-Enterprise Foundation of the University of Valencia June. 2024

CONUS @ Brokdorf

- Operated in Brokdorf Nuclear Power Plant (KBR) from 2018 to 2022.
- Final result submitted and under review, upper limit: factor ~2 above SM prediction.
- Yet the strongest CE*v*NS limit from nuclear reactor under Lindhard quenching.
- Details were given in Wednesday's talk.

50	Likelihood fit	Anticipated Signals (k=0.16)	Exposure (ON/OFF, kg-d)	Detector
z	<59	42	142/40	C1
9.0 OFF)/O	<75	26	146/130	C2
. <u>-0.</u>	<90	23	139/102	C4
	<143	91	426/272	Total

From CONUS to CONUS+

- Nuclear power plants in Germany were shut-down...
- The new site: Leibstadt Nuclear Power Plant (KKL), Switzerland
- Experiment hall: ~20.7m from 3.6 GW reactor core, 1.45 x $10^{13} v/s/cm^2$

COvUS+

Background characterization

Gamma background:

- Measured with CONRAD, a low background p-type coaxial HPGe detector (m =2.2 kg)
- Factor ~25 smaller than in KBR

Neutron:

- Measured by Bonner Sphere detectors
- ~30 times larger than in KBR
- Still sub-dominant in ROI

Background characterization

Muon:

- Measured by a liquid scintillator detector. Compare the rate difference between KKL and open area.
- Shows 7.4 m w.e. of overburden.
- More efficient muon-veto system mandatory.

Radon:

- Measured with RadonScout, a commercial self-protection device.
- Similar rate with KBR. 100~200Bq/m³.
- Apply radon-free air flushing like in KBR.

Detector and shield upgrade

Ge crystal: reduced point-contact size **ASIC:** higher trigger efficiency at low energy.

Cryostat: water-cooled to reduce vibration and microphonic noise. **Muon veto:** lead layer replaced by additional plastic scintillator layer. **DAQ:** waveform sampling for Ge (4 channels), and muon veto (40

channels).

Trigger efficiency & resolution

On all detectors, we achieved:

- > 90% trigger efficiency at $150eV_{ee}$
- < 50eV pulser resolution

Threshold for CEvNS searching is set to $150eV_{ee}$

(preliminary)

Background controlling

Special old-Lead soldering wire applied in ASIC

• Pb210 contamination suppressed

Radon flushing with pressurized air

- Significant improvement in high energy count rate Active muon veto with low background PMTs
- Cut window: 450us
- Reduction: > 99% in [0.15-1] keV range
 Pulse shape discrimination
- Reduce surface events

Computation

Internet connection dedicated to CONUS and decoupled from the power plant.

- Remote operation: calibration, run, etc.
- Slow control system
- Realtime data transfer & online analysis

Timeline

Preliminary data (Reactor ON)

Background components:

- Radon
- Muon
 - Induced neutron (fast)
 - Cosmogenic isotopes
 - Induced X-ray on Pb
- Reactor correlated neutrons (thermal)
 - Induced Ge metastable states
- Material contamination (²¹⁰Pb, Co) → lower than KBR

(Low energy)

• X-Ray from cosmogenic isotopes

Precise modeling of background compositions ongoing!

2024/6/12

Prospects

With better threshold and trigger efficiency, we expect CEvNS signals to be ~10x larger!

- CONUS: 70/det/yr
- CONUS+: 580/det/yr
- CONUS+ future: >1400/det/yr

Additional upgrade for the detector is planned for the next phase of run, applying 2.5kg Ge diode and further low energy threshold.

Stay tuned for the first result!

Assume Lindhard quenching, k=0.164

The CONUS/CONUS+ collaboration

Max-Planck-Institut für Kernphysik (MPIK), Heidelberg: N. Ackermann, H. Bonet, C. Buck, J. Hakenmüller, J. Hempfling, G. Heusser, M. Lindner, W. Maneschg, K. Ni, T. Rink, E. Sanchez-Garcia, H. Strecker
Former collaborators: T. Schierhuber, E. Van der Meeren, J. Henrichs, T. Hugle, J. Stauber, S. Armbruster, A. Bonhomme
Preussen Elektra GmbH, Kernkraftwerk Brokdorf (KBR), Brokdorf: K. Fülber, R. Wink
Kernkraftwerk Leibstadt AG (KKL), Leibstadt: J. Woenckhaus, M. Rank

Scientific cooperations with:

Physikalisch-Technische Bundesanstalt (PTB), Braunschweig: R. Nolte, E. Pirovano, M. Reginatto, M. Zboril, A. Zimbal Paul-Scherrer-Institut (PSI), Villigen: E. Hohmann

Summary

- CONUS+, the successor experiment of CONUS, has been relocated to Leibstadt Nuclear Power Plant (KKL).
- Environmental background of the new site is fully characterized.
- Multiple upgrades have been made in CONUS+, including detector, shield and computation.
- Physics data taking (RUN-1) is ongoing. Preliminary data show a good performance and promising prospect.

Double layered muon veto

- In addition to the reused muon veto from CONUS, we replace some inner lead bricks by another layer of scintillators.
- DAQ upgrade: we do independent trigger on each PMT, which enables coincidence for better muon identification
- Veto efficiency improved to >99% in ROI

Reactor correlated neutron

- Neutron spectrometry with NEMUS detectors by PTB
- → Highly thermalized (>80%) and correlated with reactor thermal power
- Muon induced neutron takes the major role in CONUS background, instead of reactor neutron

Pulse Shape Discrimination (PSD)

Efficiency: remove ~50% of the surface events at ~300eV with >90% bulk event acceptance

- Energy deposition near the transition edge contributes to a slow signal.
- Removing slow pulses could reduce surface background.

2024/6/12

Background estimation (KBR)

- Suppression factor by shield: >10⁴
- Remaining bkg rate in ROI: O(10) cts/d/kg
- Bkg is dominated by muon-induced events and ²¹⁰Pb events
 - Reactor neutron/activation negligible

Run stability (Run5)

20