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Our Neutrino Source:
The Spallation Neutron Source at ORNL

=

= — > . 2 .
- . | SRR < o

| o

— 60 Hz,
B ~400 ns
Wide
Pulses

1.3 GeV
Protons
2 MW
Beam

THE UNIVERSITY OF

Efremenko, Y. (2020). What we can learn from CEVNS? (Coherent Elastic neutrino Nucleus Scattering) TENNESSEE T
2 [PowerPoint presentation]. 5 th International Conference on Particle Physics and Astrophysics, Moscow, Russia. KNOXVILLE



Spallation Neutron Source -v Productlon
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Applications in Supernova Neutrino Detection

The SNS produces neutrinos in an Understanding the cross section of
energy range similar to that of core- these neutrinos scattering on oxygen is
collapse supernovae (tens of MeV) critical for accurately measuring these
—— supernova neutrino fluxes in water
° T ) Cherenkov detectors such as Super-
' o eNs v, Kamiokande and Hyper-Kamiokande

[CISNS v, Supernova 1987a
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Supernova Neutrinos & Water Cherenkov
Detectors

« SN 1987A is thus far the only source of
detected supernova neutrinos

« Kamiokande detected 11 v from this event

« Super-Kamiokande would have detected
~120 vfrom SN 1987A if had been
operational at the time

. H¥per-Kamiokande would have detected
~1,000 v from SN 1987A

« Some fraction of these neutrino events will be
detected via neutrino-oxygen interactions

 Understanding this neutrino-oxygen cross
section will help these very large detectors to
interpret signals from future supernovae
— E.g., by determining which events were from

neutrino-oxygen scattering and which were from
inverse beta decay or neutrino-electron scattering

Schematic of Hyper-Kamiokande
Image credit: Hyper-Kamiokande collaboration
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Charged-Current Neutrino-Oxygen Interaction
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* v, of interest are in the energy range of
tens of MeV

* On the right are theoretical predictions
made by Wick Haxton in 1987 for the

cross section between O nuclei and v,./v

* These cross section predictions have
never been tested at this energy range
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Heavy Water Cherenkov
Detector

« 550 kg heavy water Cherenkov detector
installed roughly 20 m from SNS target,
90° off the proton beam axis

« The primary purpose of this detector will
be to measure the neutrino flux from the
p + Hg collision via CC v-deuterium
channel

» Detector will also be used to measure CC
vO cross section

 Plan to measure neutrino flux to better
than 5% uncertainty in two SNS-years of
collecting data
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D,0 detector is
also covered by:
* 5.08 cm thick

Inside of steel
vessel coated

with four layers lead shielding
of reflective * 2.54 cmmn muon
Tyvek® veto panels

LED flashers at bottom of vessel, pointed upwards
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Neutrino-Deuterium Background

* Sharply pulsed neutrino flux allows V,+dDe+p+p
constant backgrounds to be easily o RS L S S R AR
subtracted 12— 0

» Thus, only significant background is v, e
scattering off deuterium in D,O 535V, +d
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very well understood, but also much
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larger than neutrino-oxygen cross 4 195v, + 0
section ) / events/SNS-yr
 We plan to run pure light water - A |
detector for pure neutrino-oxygen ° 0 20 30 . 40 50
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Second Water Cherenkov Detector Module

« Second water Cherenkov detector is
currently under construction

N\—Hg TARGET

 To be placed next to current heavy
water Cherenkov detector

 Will initially be filled with light water
Only 7 :',::_:_-_,__—,,_‘T_, 1:'.r

— Design otherwise identical to first module TR e ':,:.'.‘f;‘;bés
GE&HRA‘( D O H O
+ All major components for detector are

ready; we expect deployment in the
next few months
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Summary

« Charged-current neutrino-oxygen scattering is important for measuring
supernova neutrino fluxes in large water-based neutrino detectors.

 This neutrino-oxygen cross section has never been measured in the
supernova neutrino energy range.

* The SNS is an ideal source of sharply pulsed electron neutrinos in the
energy range of supernova neutrinos.

* The possibility of this measurement has sparked great interest from the
Super-Kamiokande and Hyper-Kamiokande collaborations.

— There is a proposal from people at S-K and H-K to deploy an even bigger light water
detector at the SNS.
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