Incoherent solar neutrino scattering off Thallium isotopes

In collaboration with M. Hellgren and J. Suhonen

June 13, Magnificent CEvNS 2024, Valencia

Dimitrios Papoulias National and Kapodistrian University of Athens

Outline

• Overview of inelastic neutrino-nucleus scattering Multipole decomposition of the hadronic current

- Irreducible tensor operators

Formalism in terms of nuclear recoil energy

- Lepton traces
- Inelastic cross section

• Shell Model calculations

- Inelastic neutrino scattering off Thallium isotopes
- Inelastic event rates induced by solar neutrinos

 $\nu_e + {}^{203/205}$ Tl(ground state)

$$\hat{H}_{\text{eff}} = \frac{G}{\sqrt{2}} \int d^3 \mathbf{x} j_{\mu}(\mathbf{x}) \mathcal{J}^{\mu}(\mathbf{x}),$$

$$\rightarrow \nu_e + {}^{203/205}$$
Tl(excited state)

$$\hat{H}_{\text{eff}} = \frac{G}{\sqrt{2}} \int d^3 \mathbf{x} j_{\mu}(\mathbf{x}) \mathcal{J}^{\mu}(\mathbf{x}),$$

 $\nu_e + {}^{203/205}$ Tl(ground state) $\longrightarrow \nu_e + {}^{203/205}$ Tl(excited state)

Final state nucleus not in the ground state

ω : excitation energy

$$q_{\mu} = k_{\mu} - k'_{\mu} = K'_{\mu} - K_{\mu}$$

$$\rightarrow \nu_{e} + {}^{203/205}\text{Tl}(\text{excited state})$$

Leptonic and hadronic currents

The cross section from an initial $|i\rangle$ to a final $|f\rangle$ nuclear state will be proportional to

$$\sigma \propto \left| \left\langle f | \hat{H}_{\text{eff}} | i \right\rangle \right|^2$$

The cross section from an initial $|i\rangle$ to a final $|f\rangle$ nuclear state will be proportional to

$$\sigma \propto \left| \left\langle f | \hat{H}_{\text{eff}} | i \right\rangle \right|^2$$

The hadronic current can be written as a sum over nucleons

$$\mathcal{J}_{\mu}(\mathbf{x}) = \sum_{i=1}^{A} \mathcal{J}_{\mu}(\mathbf{x}_{i}) \delta^{(3)}(\mathbf{x} - \mathbf{x}_{i}) = \sum_{i=1}^{A} [J_{\mu}(\mathbf{x}_{i}) + J_{\mu 5}(\mathbf{x}_{i})] \delta^{(3)}(\mathbf{x} - \mathbf{x}_{i})$$

Leptonic and hadronic currents

With the matrix element being

$$egin{aligned} \left\langle f
ight| \hat{H}_{ ext{eff}} \left| i
ight
angle = \int \left\langle f
ight| \mathcal{H}_{ ext{eff}} \left| i
ight
angle \mathrm{d}^{3} oldsymbol{x} = rac{G}{\sqrt{2}} \int \left\langle f
ight| j_{\mu}(oldsymbol{x}) \left| i
ight
angle \left\langle f
ight| \mathcal{J}^{\mu}(oldsymbol{x})
ight
angle \end{aligned}$$

The leptonic current is

$$j_{\mu}(\boldsymbol{x}) = \overline{\psi}_{l'} \gamma_{\mu} (1 - \gamma_5) \psi$$

$$\psi(x) = \frac{1}{\sqrt{V}} \sum_{\boldsymbol{p}\lambda} \left[a_{\boldsymbol{p}\lambda} u(\boldsymbol{p}\lambda) e^{i\boldsymbol{p}\cdot\boldsymbol{x}} + b_{\boldsymbol{p}\lambda}^{\dagger} v(-\boldsymbol{p}\lambda) \right]$$

$$ig \langle f | \, \hat{H}_{ ext{eff}} \, | i
angle = \int ig \langle f | \, \mathcal{H}_{ ext{eff}} \, | i
angle \, ext{d}^3 oldsymbol{x}$$

 $= \frac{G}{\sqrt{2}} \int \langle f | j_{\mu}(\boldsymbol{x}) | i \rangle \langle f | \mathcal{J}^{\mu}(\boldsymbol{x}) | i \rangle d^{3}\boldsymbol{x}.$

$$egin{aligned} \left\langle f
ight| \hat{H}_{ ext{eff}} \left| i
ight
angle &= \int \left\langle f
ight| \mathcal{H}_{ ext{eff}} \left| i
ight
angle ext{d}^{3} oldsymbol{x} \end{aligned}$$

leptonic matrix element

$$\langle f | j_{\mu}(\boldsymbol{x}) | i \rangle = l_{\mu} e^{-i\boldsymbol{q}\cdot\boldsymbol{x}} = (l_0, -\boldsymbol{l}) e^{-i\boldsymbol{q}\cdot\boldsymbol{x}},$$

$$l_{\mu} = rac{1}{V} \cdot \begin{cases} \overline{u}(\mathbf{k}')\gamma_{\mu}(1-\gamma_{5})u(\mathbf{k}), \text{ for neutrino reactions,} \\ \overline{v}(-\mathbf{k})\gamma_{\mu}(1-\gamma_{5})v(\mathbf{k}'), \text{ for antineutrino reactions.} \end{cases}$$

 $=rac{G}{\sqrt{2}}\int ig\langle f|\, j_\mu(oldsymbol{x})\,|i
angle\, ig\langle f|\, \mathcal{J}^\mu(oldsymbol{x})\,|i
angle\, \mathrm{d}^3oldsymbol{x}.$

$$egin{aligned} \left\langle f
ight| \hat{H}_{ ext{eff}} \left| i
ight
angle &= \int \left\langle f
ight| \mathcal{H}_{ ext{eff}} \left| i
ight
angle ext{d}^{3} oldsymbol{x} \end{aligned}$$

leptonic matrix element

$$\langle f | j_{\mu}(\boldsymbol{x}) | i \rangle = l_{\mu} e^{-i\boldsymbol{q}\cdot\boldsymbol{x}} = (l_0, -\boldsymbol{l}) e^{-i\boldsymbol{q}\cdot\boldsymbol{x}},$$

$$l_{\mu} = rac{1}{V} \cdot \begin{cases} \overline{u}(\mathbf{k}')\gamma_{\mu}(1-\gamma_{5})u(\mathbf{k}), \text{ for neutrino reactions,} \\ \overline{v}(-\mathbf{k})\gamma_{\mu}(1-\gamma_{5})v(\mathbf{k}'), \text{ for antineutrino reactions.} \end{cases}$$

 $=rac{G}{\sqrt{2}}\int ig\langle f|\, j_\mu(oldsymbol{x})\,|i
angle\,\langle f|\, \mathcal{J}^\mu(oldsymbol{x})\,|i
angle\,\mathrm{d}^3oldsymbol{x}.$

hadronic matrix element

 $\langle f | \mathcal{J}_{\mu}(\boldsymbol{x}) | i \rangle = \langle f | (\mathcal{J}_{0}(\boldsymbol{x}), -\mathcal{J}(\boldsymbol{x})) | i \rangle = (\langle f | \mathcal{J}_{0}(\boldsymbol{x}) | i \rangle, -\langle f | \mathcal{J}(\boldsymbol{x}) | i \rangle) \equiv$ $(\mathcal{J}_0(oldsymbol{x})_{fi}, -oldsymbol{\mathcal{J}}(oldsymbol{x})_{fi})$

$$egin{aligned} \left\langle f
ight| \hat{H}_{ ext{eff}} \left| i
ight
angle &= \int \left\langle f
ight| \mathcal{H}_{ ext{eff}} \left| i
ight
angle ext{d}^{3} oldsymbol{x} \end{aligned}$$

leptonic matrix element

$$\langle f | j_{\mu}(\boldsymbol{x}) | i \rangle = l_{\mu} e^{-i\boldsymbol{q}\cdot\boldsymbol{x}} = (l_0, -\boldsymbol{l}) e^{-i\boldsymbol{q}\cdot\boldsymbol{x}},$$

 $l_{\mu} = \frac{1}{V} \cdot \begin{cases} \overline{u}(\mathbf{k}')\gamma_{\mu}(1-\gamma_{5})u(\mathbf{k}), \text{ for neutrino reactions,} \\ \overline{v}(-\mathbf{k})\gamma_{\mu}(1-\gamma_{5})v(\mathbf{k}'), \text{ for antineutrino reactions.} \end{cases}$

Putting everything together

$$H_{fi} = rac{G}{\sqrt{2}} \int l_{\mu} e^{-i \boldsymbol{q} \cdot \boldsymbol{x}} egin{pmatrix} \mathcal{J}_0(\boldsymbol{x})_{fi} \ \mathcal{J}(\boldsymbol{x})_{fi} \end{pmatrix} \mathrm{d}^3 \boldsymbol{x} = rac{G}{\sqrt{2}} \int e^{-i \boldsymbol{q} \cdot \boldsymbol{x}} \left[l_0 \mathcal{J}_0(\boldsymbol{x})_{fi} - \boldsymbol{l} \cdot \boldsymbol{\mathcal{J}}(\boldsymbol{x})_{fi}
ight] \mathrm{d}^3 \boldsymbol{x}$$

 $=rac{G}{\sqrt{2}}\int \langle f|\, j_{\mu}(oldsymbol{x})\, |i
angle\, \langle f|\, \mathcal{J}^{\mu}(oldsymbol{x})\, |i
angle\, \mathrm{d}^{3}oldsymbol{x}.$

hadronic matrix element

 $\langle f | \mathcal{J}_{\mu}(\boldsymbol{x}) | i \rangle = \langle f | (\mathcal{J}_{0}(\boldsymbol{x}), -\mathcal{J}(\boldsymbol{x})) | i \rangle = (\langle f | \mathcal{J}_{0}(\boldsymbol{x}) | i \rangle, -\langle f | \mathcal{J}(\boldsymbol{x}) | i \rangle) \equiv$ $(\mathcal{J}_0(oldsymbol{x})_{fi}, -oldsymbol{\mathcal{J}}(oldsymbol{x})_{fi})$

Donnelly-Walecka multipole decomposition

$$H_{fi} = rac{G}{\sqrt{2}} \int l_{\mu} e^{-i oldsymbol{q} \cdot oldsymbol{x}} igg(oldsymbol{\mathcal{J}}_{0}(oldsymbol{x})_{fi} igg) \mathrm{d}^{3}oldsymbol{x} = rac{G}{\sqrt{2}} \int e^{-i oldsymbol{q} \cdot oldsymbol{x}} \left[l_{0} \mathcal{J}_{0}(oldsymbol{x})_{fi} - oldsymbol{l} \cdot oldsymbol{\mathcal{J}}(oldsymbol{x})_{fi}
ight] \mathrm{d}^{3}oldsymbol{x}$$

Define a complete orthonormal set of unit spatial vectors

$${f l} = \sum_{\lambda=0,\pm 1} l_\lambda {f e}^\dagger_\lambda =$$

Then any 3-vector can be written in this basis as

$$l_1 \mathbf{e}_1^{\dagger} + l_{-1} \mathbf{e}_{-1}^{\dagger} + l_{\lambda=0} \mathbf{e}_0^{\dagger} = l_1 \mathbf{e}_1^{\dagger} + l_{-1} \mathbf{e}_{-1}^{\dagger} + l_3 \mathbf{e}_0^{\dagger},$$

need to expand in plane waves the following quantities

 $l_0 e^{-i\mathbf{q}\cdot\mathbf{x}}, \quad l_+ e^{-i\mathbf{q}\cdot\mathbf{x}}, \quad l_- e^{-i\mathbf{q}\cdot\mathbf{x}}, \quad l_3 e^{-i\mathbf{q}\cdot\mathbf{x}}.$

Donnelly-Walecka multipole decomposition

$$H_{fi} = \frac{G}{\sqrt{2}} \int l_{\mu} e^{-iq \cdot x} \begin{pmatrix} \mathcal{J}_{0}(x)_{fi} \\ \mathcal{J}(x)_{fi} \end{pmatrix} d^{3}x = \frac{G}{\sqrt{2}} \int e^{-iq \cdot x} \left[l_{0} \mathcal{J}_{0}(x)_{fi} - l \cdot \mathcal{J}(x)_{fi} \right] d^{3}x$$

Then any 3-vector can be written in this basis as

$$1 = \sum_{\lambda=0,\pm 1} l_{\lambda} e^{\dagger}_{\lambda} = l_{1} e^{\dagger}_{1} + l_{-1} e^{\dagger}_{-1} + l_{\lambda=0} e^{\dagger} = l_{1} e^{\dagger}_{1} + l_{-1} e^{\dagger}_{-1} + l_{3} e^{\dagger}_{0},$$
need to expand in plane waves the following quantities

Define a complete orthonormal set of unit spatial vectors

$$\begin{split} \frac{1}{\sqrt{2}} \int l_{\mu} e^{-iq \cdot x} \begin{pmatrix} \sigma(e) f_{i} \\ \mathcal{J}(x)_{fi} \end{pmatrix} \mathrm{d}^{3}x &= \frac{1}{\sqrt{2}} \int e^{-iq \cdot x} \left[l_{0} \mathcal{J}_{0}(x)_{fi} - l \cdot \mathcal{J}(x)_{fi} \right] \mathrm{d}^{3}x \\ \text{Then any 3-vector can be written in this basis as} \\ l &= \sum_{\lambda=0,\pm 1} l_{\lambda} \mathrm{e}^{\dagger}_{\lambda} = l_{1} \mathrm{e}^{\dagger}_{1} + l_{-1} \mathrm{e}^{\dagger}_{-1} + l_{\lambda=0} \mathrm{e}^{i} = l_{1} \mathrm{e}^{\dagger}_{1} + l_{-1} \mathrm{e}^{\dagger}_{-1} + l_{3} \mathrm{e}^{\dagger}_{0}, \\ \text{need to expand in plane waves the following quantities} \end{split}$$

 $l_0 e^{-i\mathbf{q}\cdot\mathbf{x}}, \quad l_+ e^{-i\mathbf{q}\cdot\mathbf{x}}, \quad l_- e^{-i\mathbf{q}\cdot\mathbf{x}}, \quad l_3 e^{-i\mathbf{q}\cdot\mathbf{x}}.$

Tensor operators

The matrix element of the interaction Hamiltonian finally becomes

$$egin{aligned} &\langle f|\hat{H}_{eff}|i
angle = -rac{\mathcal{G}}{\sqrt{2}}\langle f|iggl\{\sum_{J\geq 0}\sqrt{4\pi(2J+1)}(-i)^Jigl(l_3\hat{\mathcal{L}}_{J0}(\kappa)-l_0\hat{\mathcal{M}}_{J0}(\kappa)igr)\ &+\sum_{\lambda=\pm1}\sum_{J\geq 1}\sqrt{2\pi(2J+1)}(-i)^Jl_\lambdaigl(\lambda\hat{\mathcal{T}}_{J-\lambda}^{mag}(\kappa)+\hat{\mathcal{T}}_{J-\lambda}^{el}(\kappa)igr)iggr\}|i
angle. \end{aligned}$$

Eight irreducible tensor operators

$$\begin{split} \hat{\mathcal{M}}_{JM}(\kappa) &= \hat{M}_{JM}^{coul J} - \hat{M}_{JM}^{coul J} = \int d\mathbf{r} M_{M}^{J}(\kappa \mathbf{r}) \hat{\mathcal{J}}_{0}(\mathbf{r}), \\ \hat{\mathcal{L}}_{JM}(\kappa) &= \hat{\mathcal{L}}_{JM} - \hat{\mathcal{L}}_{JM}^{5} = i \int d\mathbf{r} \left(\frac{1}{\kappa} \nabla M_{M}^{J}(\kappa \mathbf{r})\right) \cdot \hat{\mathcal{J}}(\mathbf{r}), \\ \hat{\mathcal{T}}_{JM}^{el}(\kappa) &= \hat{\mathcal{T}}_{JM}^{el} - \hat{\mathcal{T}}_{JM}^{el 5} = \int d\mathbf{r} \left(\frac{1}{q} \nabla \times \mathbf{M}_{M}^{JJ}(\kappa \mathbf{r})\right) \cdot \hat{\mathcal{J}}(\mathbf{r}), \\ \hat{\mathcal{T}}_{JM}^{mag}(\kappa) &= \hat{\mathcal{T}}_{JM}^{mag} - \hat{\mathcal{T}}_{JM}^{mag 5} = \int d\mathbf{r} \mathbf{M}_{M}^{JJ}(\kappa \mathbf{r}) \cdot \hat{\mathcal{J}}(\mathbf{r}), \end{split}$$

$$\begin{split} \hat{\mathcal{M}}_{JM}(\kappa r) &= \hat{\mathcal{M}}_{JM}^{coul1} + \hat{\mathcal{M}}_{JM}^{coul5} \\ &= F_1^V M_M^J(\kappa r) - i \frac{\kappa}{M_N} [F_A \Omega_M^J(\kappa r) + \frac{1}{2} (F_A + q_0 F_P) \Sigma \\ \hat{\mathcal{L}}_{JM}(\kappa r) &= \hat{\mathcal{L}}_{JM} + \hat{\mathcal{L}}_{JM}^5 \\ &= \frac{q_0}{\kappa} F_1^V M_M^J(\kappa r) + i F_A \Sigma_M^{\prime\prime J}(\kappa r)], \\ \hat{\mathcal{T}}_{JM}^{el}(\kappa r) &= \hat{\mathcal{T}}_{JM}^{el} + \hat{\mathcal{T}}_{JM}^{el5} \\ &= \frac{\kappa}{M_N} [F_1^V \Delta_M^{\prime J}(\kappa r) + \frac{1}{2} \mu^V \Sigma_M^J(\kappa r)] + i F_A \Sigma_M^{\prime J}(\kappa r)], \\ \hat{\mathcal{T}}_{JM}^{mag}(\kappa r) &= \hat{\mathcal{T}}_{JM}^{mag} + \hat{\mathcal{T}}_{JM}^{magn5} \\ &= -\frac{q}{M_N} [F_1^V \Delta_M^J(\kappa r) - \frac{1}{2} \mu^V \Sigma_M^{\prime J}(\kappa r)] + i F_A \Sigma_M^J(\kappa r)] \end{split}$$

Describing nuclear transitions in semileptonic processes

$$\begin{split} &\frac{1}{2J_i+1}\sum_{M_i,M_f}|\langle f|\,\hat{H}_{\text{eff}}\,|i\rangle\,|^2 = \\ &\frac{G^2}{2}\frac{4\pi}{2J_i+1}\left\{\sum_{J\geq 1}\left[\frac{1\cdot\mathbf{l}^*-l_3l_3^*}{2}\left(|\langle J_f|\,\hat{\mathcal{T}}_J^{\text{mag}}(q)\,|J_i\rangle\,|^2+|\langle J_f|\,\hat{\mathcal{T}}_J^{\text{el}}(q)\,|J_i\rangle\,|^2\right)\right.\\ &\left.-i\frac{1\times\mathbf{l}^*}{2}\left(2\text{Re}\,\langle J_f|\,\hat{\mathcal{T}}_J^{\text{mag}}(q)\,|J_i\rangle\,\langle J_f|\,\hat{\mathcal{T}}_J^{\text{el}}(q)\,|J_i\rangle^*\right)\right]+\sum_{J\geq 0}\left[l_3l_3^*\left(|\langle J_f|\,\hat{\mathcal{L}}_J(q)\,|J_i\rangle\,|^2\right)\right.\\ &\left.+l_0l_0^*|\langle J_f|\,\hat{\mathcal{M}}_J(q)\,|J_i\rangle\,|^2\right)-2\text{Re}\left(l_3l_0^*\,\langle J_f|\,\hat{\mathcal{L}}_J(q)\,|J_i\rangle\,\langle J_f|\,\hat{\mathcal{M}}_J(q)\,|J_i\rangle^*\right)\right]\right\},\end{split}$$

 $l_i l_i^*$: are the lepton traces J_i : is the spin of the initial nuclear state $M_{i,f}$: magnetic quantum numbers of the nuclear state

Irreducible tensor operators (Calculated using Shell Model)

- Coulomb,
- Longitudinal,
- Transverse electric
- Transverse magnetic

$$\hat{\mathcal{M}}_J, \ \hat{\mathcal{L}}_J, \ \hat{\mathcal{T}}_J^{ ext{el}} ext{ and } \ \hat{\mathcal{T}}_J^{ ext{mag}}$$

Describing nuclear transitions in semileptonic processes

$$\begin{split} &\frac{1}{2J_{i}+1}\sum_{M_{i},M_{f}}|\langle f|\,\hat{H}_{\text{eff}}\,|i\rangle\,|^{2} = \\ &\frac{G^{2}}{2}\frac{4\pi}{2J_{i}+1}\left\{\sum_{J\geq1}\left[\frac{1\cdot\mathbf{l}^{*}-l_{3}l_{3}^{*}}{2}\left(|\langle J_{f}|\,\hat{\mathcal{T}}_{J}^{\text{mag}}(q)\,|J_{i}\rangle\,|^{2}+|\langle J_{f}|\,\hat{\mathcal{T}}_{J}^{\text{el}}(q)\,|J_{i}\rangle\,|^{2}\right)\right.\\ &\left.-i\frac{1\times\mathbf{l}^{*}}{2}\left(2\text{Re}\,\langle J_{f}|\,\hat{\mathcal{T}}_{J}^{\text{mag}}(q)\,|J_{i}\rangle\,\langle J_{f}|\,\hat{\mathcal{T}}_{J}^{\text{el}}(q)\,|J_{i}\rangle^{*}\right)\right]+\sum_{J\geq0}\left[l_{3}l_{3}^{*}\left(|\langle J_{f}|\,\hat{\mathcal{L}}_{J}(q)\,|J_{i}\rangle\,|^{2}\right)\right.\\ &\left.+l_{0}l_{0}^{*}|\,\langle J_{f}|\,\hat{\mathcal{M}}_{J}(q)\,|J_{i}\rangle\,|^{2}\right)-2\text{Re}\left(l_{3}l_{0}^{*}\,\langle J_{f}|\,\hat{\mathcal{L}}_{J}(q)\,|J_{i}\rangle\,\langle J_{f}|\,\hat{\mathcal{M}}_{J}(q)\,|J_{i}\rangle^{*}\right)\right]\right\},\end{split}$$

Lepton traces for neutrino-nucleus scattering

$$\sum_{\text{spins}} l_0 l_0^* = 1 + \cos \theta$$

$$\sum_{\text{spins}} l_3 l_0^* = \frac{E_{\nu} - E_{\nu'}}{|\mathbf{q}|} (1 + \cos \theta)$$

$$\sum_{\text{spins}} l_3 l_3^* = (1 + \cos \theta) - 2 \frac{E_{\nu} E_{\nu'}}{|\mathbf{q}|^2} \sin^2 \theta$$

$$\sum_{\text{spins}} \frac{1}{2} (\mathbf{l} \cdot \mathbf{l} - l_3 l_3^*) = (1 - \cos \theta) + \frac{E_{\nu} E_{\nu'}}{|\mathbf{q}|^2} \sin^2 \theta$$

$$\frac{-i}{2} \sum_{\text{spins}} (\mathbf{l} \times \mathbf{l}^*)_3 = -\frac{E_{\nu} + E_{\nu'}}{|\mathbf{q}|} (1 - \cos \theta)$$

Irreducible tensor operators (Calculated using Shell Model)

- Coulomb,
- Longitudinal,
- Transverse electric
- Transverse magnetic

$$\hat{\mathcal{M}}_J, \ \hat{\mathcal{L}}_J, \ \hat{\mathcal{T}}_J^{\mathrm{el}} \ \mathrm{and} \ \hat{\mathcal{T}}_J^{\mathrm{mag}}$$

$$\frac{\mathrm{d}^2 \sigma_{i \to f}}{\mathrm{d}\Omega \mathrm{d}E_{\mathrm{exc}}} = \frac{G^2 |\mathbf{k}'| E_{k'}}{\pi (2J_i + 1)} \left(\sum_{J \ge 0} \sigma_{\mathrm{CL}}^J + \sum_{J \ge 1} \sigma_{\mathrm{T}}^J \right),$$

Coulomb-Longitudinal contribution

$$\sigma_{\rm CL}^{J} = (1 + \cos\theta) |(J_f||\mathcal{M}_J(q)||J_i)|^2 + \left(1 + \cos\theta - 2\frac{E_k E_{k'}}{q^2} \sin^2\theta\right) |(J_f||\mathcal{L}_J(q)||J_i)|^2 + \frac{E_k - E_{k'}}{q} (1 + \cos\theta) 2\text{Re} \left[(J_f||\mathcal{L}_J(q)||J_i)(J_f||\mathcal{M}_J(q)||J_i)^*\right]$$

$$\sigma_{\rm T}^{J} = \left(1 - \cos\theta + \frac{E_k E_{k'}}{q^2} \sin^2\theta\right) \left[|(J_f| |\mathcal{T}_J^{\rm el}(q)| |J_i)|^2 + |(J_f| |\mathcal{T}_J^{\rm mag}(q)| |J_i)|^2 \right] - \frac{(E_k - E_{k'})}{q} (1 - \cos\theta) 2 \operatorname{Re} \left[(J_f| |\mathcal{T}_J^{\rm mag}(q)| |J_i) (J_f| |\mathcal{T}_J^{\rm el}(q)| |J_i)^* \right]$$

Transverse Electric/Magnetic contribution

$$\frac{G^2 |\mathbf{k}'| E_{k'}}{\tau (2J_i + 1)} \left(\sum_{J \ge 0} \sigma_{\mathrm{CL}}^J + \sum_{J \ge 1} \sigma_{\mathrm{T}}^J \right),$$

Coulomb-Longitudinal contribution

$$||J_i||^2 + \left(1 + \cos\theta - 2\frac{E_k E_{k'}}{q^2} \sin^2\theta\right) |(J_f||\mathcal{L}_J(q)||J_i)|^2$$
$$J_f||\mathcal{L}_J(q)||J_i)(J_f||\mathcal{M}_J(q)||J_i)^*]$$

Transverse Electric/Magnetic contribution

$$\theta \left(|(J_f||\mathcal{T}_J^{\text{el}}(q)||J_i)|^2 + |(J_f||\mathcal{T}_J^{\text{mag}}(q)||J_i)|^2 \right)$$

$$\frac{\mathrm{d}^2 \sigma_{i \to f}}{\mathrm{d}\Omega \mathrm{d}E_{\mathrm{exc}}} = \frac{G^2}{\pi (2\pi)^2}$$

kinematics

 $E_{\nu} - E_{\nu'} = \omega + T$, with ω being the excitation energy

$$T \approx \frac{E_{\nu}(E_{\nu} - \omega)(1 - \cos \theta) + \omega^2/2}{M}.$$

$$T_{\min} = rac{\omega^2}{2M}, \qquad T_{\max} = rac{(2E_{\nu} - \omega)^2}{2M}.$$

Change of variables

$\mathrm{d}\sigma$	$\mathrm{d}\sigma$	M
$\overline{\mathrm{d}T} =$	$\overline{\mathrm{d}\cos\theta}$	$\overline{E_{\nu}(E_{\nu}-\omega)}$

$$\begin{split} \sum_{\text{spins}} l_0 l_0^* &= \frac{4E_\nu^2 - 4E_\nu(T+\omega) - 2MT + \omega(2T+\omega)}{2E_\nu(E_\nu - \omega)} \,, \\ \sum_{\text{spins}} l_3 l_0^* &= \frac{(T+\omega)\left(4E_\nu^2 - 2MT - 4E_\nu(T+\omega) + \omega(2T+\omega)\right)}{2\sqrt{2}E_\nu\left(E_\nu - \omega\right)\sqrt{MT}} \,, \\ \sum_{\text{spins}} l_3 l_3^* &= \frac{(T+\omega)^2\left(4E_\nu^2 - 2MT - 4E_\nu(T+\omega) + \omega(2T+\omega)\right)}{4E_\nu MT\left(E_\nu - \omega\right)} \\ \sum_{\text{spins}} \frac{1}{2} (\mathbf{l} \cdot \mathbf{l}^* - l_3 l_3^*) &= \frac{(2MT - \omega(2T+\omega))\left(4E_\nu^2 + 2MT - 4E_\nu(T+\omega) + \omega(2T+\omega)\right)}{8E_\nu MT\left(E_\nu - \omega\right)} \\ \sum_{\text{spins}} \frac{-i}{2} (\mathbf{l} \times \mathbf{l}^*)_3 &= \frac{(2E_\nu - \omega)\left(2MT - \omega(2T+\omega)\right)}{2\sqrt{2}E_\nu\left(E_\nu - \omega\right)\sqrt{MT}} \,. \end{split}$$

$$\begin{split} &\frac{1}{2J_{i}+1}\sum_{M_{i},M_{f}}|\langle f|\,\hat{H}_{\text{eff}}\,|i\rangle\,|^{2} = \\ &\frac{G^{2}}{2}\frac{4\pi}{2J_{i}+1}\left\{\sum_{J\geq1}\left[\frac{1\cdot\mathbf{l}^{*}-l_{3}l_{3}^{*}}{2}\left(|\langle J_{f}|\,\hat{\mathcal{T}}_{J}^{\text{mag}}(q)\,|J_{i}\rangle\,|^{2}+|\langle J_{f}|\,\hat{\mathcal{T}}_{J}^{\text{el}}(q)\,|J_{i}\rangle\,|^{2}\right)\right. \\ &\left.-i\frac{1\times\mathbf{l}^{*}}{2}\left(2\text{Re}\,\langle J_{f}|\,\hat{\mathcal{T}}_{J}^{\text{mag}}(q)\,|J_{i}\rangle\,\langle J_{f}|\,\hat{\mathcal{T}}_{J}^{\text{el}}(q)\,|J_{i}\rangle^{*}\right)\right] +\sum_{J\geq0}\left[l_{3}l_{3}^{*}\left(|\langle J_{f}|\,\hat{\mathcal{L}}_{J}(q)\,|J_{i}\rangle\,|^{2}\right) \\ &\left.+l_{0}l_{0}^{*}|\,\langle J_{f}|\,\hat{\mathcal{M}}_{J}(q)\,|J_{i}\rangle\,|^{2}\right) -2\text{Re}\left(l_{3}l_{0}^{*}\,\langle J_{f}|\,\hat{\mathcal{L}}_{J}(q)\,|J_{i}\rangle\,\langle J_{f}|\,\hat{\mathcal{M}}_{J}(q)\,|J_{i}\rangle^{*}\right)\right]\right\},\end{split}$$

$$l_{3}l_{0}^{*} = \frac{T+\omega}{\sqrt{2MT}} l_{0}l_{0}^{*} \approx \frac{T+\omega}{|\mathbf{q}|} l_{0}l_{0}^{*},$$
$$l_{3}l_{3}^{*} = \frac{(T+\omega)^{2}}{2MT} l_{0}l_{0}^{*} \approx \left(\frac{T+\omega}{|\mathbf{q}|}\right)^{2} l_{0}l_{0}^{*}.$$

$$(\mathbf{l} \cdot \mathbf{l}^* - l_3 l_3^*) \approx \left(1 - \frac{\omega^2}{|\mathbf{q}|^2}\right) \left(l_0 l_0^* + \frac{|\mathbf{q}|^2}{E_{\nu} \left(E_{\nu} - \omega\right)}\right)$$

$$\begin{split} \sum_{\text{spins}} l_0 l_0^* &= \frac{4E_\nu^2 - 4E_\nu(T+\omega) - 2MT + \omega(2T+\omega)}{2E_\nu(E_\nu - \omega)} \,, \\ \sum_{\text{spins}} l_3 l_0^* &= \frac{(T+\omega)\left(4E_\nu^2 - 2MT - 4E_\nu(T+\omega) + \omega(2T+\omega)\right)}{2\sqrt{2}E_\nu\left(E_\nu - \omega\right)\sqrt{MT}} \,, \\ \sum_{\text{spins}} l_3 l_3^* &= \frac{(T+\omega)^2\left(4E_\nu^2 - 2MT - 4E_\nu(T+\omega) + \omega(2T+\omega)\right)}{4E_\nu MT\left(E_\nu - \omega\right)} \\ \sum_{\text{spins}} \frac{1}{2}(\mathbf{l}\cdot\mathbf{l}^* - l_3 l_3^*) &= \frac{(2MT - \omega(2T+\omega))\left(4E_\nu^2 + 2MT - 4E_\nu(T+\omega) + \omega(2T+\omega)\right)}{8E_\nu MT\left(E_\nu - \omega\right)} \\ \sum_{\text{spins}} \frac{-i}{2}(\mathbf{l}\times\mathbf{l}^*)_3 &= \frac{(2E_\nu - \omega)\left(2MT - \omega(2T+\omega)\right)}{2\sqrt{2}E_\nu\left(E_\nu - \omega\right)\sqrt{MT}} \,. \end{split}$$

$$\begin{split} &\frac{1}{2J_{i}+1}\sum_{M_{i},M_{f}}|\langle f|\,\hat{H}_{\text{eff}}\,|i\rangle\,|^{2} = \\ &\frac{G^{2}}{2}\frac{4\pi}{2J_{i}+1}\left\{\sum_{J\geq1}\left[\frac{1\cdot\mathbf{l}^{*}-l_{3}l_{3}^{*}}{2}\left(|\langle J_{f}|\,\hat{\mathcal{T}}_{J}^{\text{mag}}(q)\,|J_{i}\rangle\,|^{2}+|\langle J_{f}|\,\hat{\mathcal{T}}_{J}^{\text{el}}(q)\,|J_{i}\rangle\,|^{2}\right)\right.\\ &\left.-i\frac{1\times\mathbf{l}^{*}}{2}\left(2\operatorname{Re}\langle J_{f}|\,\hat{\mathcal{T}}_{J}^{\text{mag}}(q)\,|J_{i}\rangle\,\langle J_{f}|\,\hat{\mathcal{T}}_{J}^{\text{el}}(q)\,|J_{i}\rangle^{*}\right)\right]+\sum_{J\geq0}\left[l_{3}l_{3}^{*}\left(|\langle J_{f}|\,\hat{\mathcal{L}}_{J}(q)\,|J_{i}\rangle\,|^{2}\right)\right.\\ &\left.+l_{0}l_{0}^{*}|\,\langle J_{f}|\,\hat{\mathcal{M}}_{J}(q)\,|J_{i}\rangle\,|^{2}\right)-2\operatorname{Re}\left(l_{3}l_{0}^{*}\,\langle J_{f}|\,\hat{\mathcal{L}}_{J}(q)\,|J_{i}\rangle\,\langle J_{f}|\,\hat{\mathcal{M}}_{J}(q)\,|J_{i}\rangle^{*}\right)\right]\right\},\end{split}$$

Let's understand these a bit better!

$$l_{3}l_{0}^{*} = \frac{T+\omega}{\sqrt{2MT}} l_{0}l_{0}^{*} \approx \frac{T+\omega}{|\mathbf{q}|} l_{0}l_{0}^{*},$$
$$l_{3}l_{3}^{*} = \frac{(T+\omega)^{2}}{2MT} l_{0}l_{0}^{*} \approx \left(\frac{T+\omega}{|\mathbf{q}|}\right)^{2} l_{0}l_{0}^{*}.$$

$$(\mathbf{l} \cdot \mathbf{l}^* - l_3 l_3^*) \approx \left(1 - \frac{\omega^2}{|\mathbf{q}|^2}\right) \left(l_0 l_0^* + \frac{|\mathbf{q}|^2}{E_\nu \left(E_\nu - \omega\right)}\right)$$

 $T \ll \omega$ and $\omega/|\mathbf{q}| \sim 10\%$ or less

$$\begin{split} \sum_{\text{spins}} l_0 l_0^* &= \frac{4E_\nu^2 - 4E_\nu(T+\omega) - 2MT + \omega(2T+\omega)}{2E_\nu(E_\nu - \omega)} \,, \\ \sum_{\text{spins}} l_3 l_0^* &= \frac{(T+\omega)\left(4E_\nu^2 - 2MT - 4E_\nu(T+\omega) + \omega(2T+\omega)\right)}{2\sqrt{2}E_\nu\left(E_\nu - \omega\right)\sqrt{MT}} \,, \\ \sum_{\text{spins}} l_3 l_3^* &= \frac{(T+\omega)^2\left(4E_\nu^2 - 2MT - 4E_\nu(T+\omega) + \omega(2T+\omega)\right)}{4E_\nu MT\left(E_\nu - \omega\right)} \\ \sum_{\text{spins}} \frac{1}{2}(\mathbf{l}\cdot\mathbf{l}^* - l_3 l_3^*) &= \frac{(2MT - \omega(2T+\omega))\left(4E_\nu^2 + 2MT - 4E_\nu(T+\omega) + \omega(2T+\omega)\right)}{8E_\nu MT\left(E_\nu - \omega\right)} \\ \sum_{\text{spins}} \frac{-i}{2}(\mathbf{l}\times\mathbf{l}^*)_3 &= \frac{(2E_\nu - \omega)\left(2MT - \omega(2T+\omega)\right)}{2\sqrt{2}E_\nu\left(E_\nu - \omega\right)\sqrt{MT}} \,. \end{split}$$

$$\begin{split} & \frac{1}{2J_i+1}\sum_{M_i,M_f}|\langle f|\,\hat{H}_{\text{eff}}\,|i\rangle\,|^2 = \\ & \frac{G^2}{2}\frac{4\pi}{2J_i+1}\left\{\sum_{J\geq 1}\left[\frac{1\cdot\mathbf{l}^*-l_3l_3^*}{2}\left(|\langle J_f|\,\hat{\mathcal{T}}_J^{\text{mag}}(q)\,|J_i\rangle\,|^2+|\langle J_f|\,\hat{\mathcal{T}}_J^{\text{el}}(q)\,|J_i\rangle\,|^2\right)\right. \\ & \left.-i\frac{1\times\mathbf{l}^*}{2}\left(2\text{Re}\,\langle J_f|\,\hat{\mathcal{T}}_J^{\text{mag}}(q)\,|J_i\rangle\,\langle J_f|\,\hat{\mathcal{T}}_J^{\text{el}}(q)\,|J_i\rangle^*\right)\right] + \sum_{J\geq 0}\left[l_3l_3^*\left(|\langle J_f|\,\hat{\mathcal{L}}_J(q)\,|J_i\rangle\,|^2\right) \right. \\ & \left.+l_0l_0^*|\langle J_f|\,\hat{\mathcal{M}}_J(q)\,|J_i\rangle\,|^2\right) - 2\text{Re}\left(l_3l_0^*\,\langle J_f|\,\hat{\mathcal{L}}_J(q)\,|J_i\rangle\,\langle J_f|\,\hat{\mathcal{M}}_J(q)\,|J_i\rangle^*\right)\right]\right\}, \end{split}$$

Let's understand these a bit better

$$l_{3}l_{0}^{*} = \frac{T+\omega}{\sqrt{2MT}} l_{0}l_{0}^{*} \approx \frac{T+\omega}{|\mathbf{q}|} l_{0}l_{0}^{*},$$

$$l_{3}l_{3}^{*} = \frac{(T+\omega)^{2}}{2MT} l_{0}l_{0}^{*} \approx \left(\frac{T+\omega}{|\mathbf{q}|}\right)^{2} l_{0}l_{0}^{*}.$$
Suppressed

$$\left(\mathbf{l}\cdot\mathbf{l}^* - l_3 l_3^*\right) \approx \left(1 - \frac{\omega^2}{|\mathbf{q}|^2}\right) \left(l_0 l_0^* + \frac{|\mathbf{q}|^2}{E_{\nu} \left(E_{\nu} - \omega\right)}\right)$$

 $T \ll \omega$ and $\omega/|\mathbf{q}| \sim 10\%$ or less

$$\begin{split} \sum_{\text{spins}} l_0 l_0^* &= \frac{4E_{\nu}^2 - 4E_{\nu}(T+\omega) - 2MT + \omega(2T+\omega)}{2E_{\nu}(E_{\nu}-\omega)} \,, \\ \sum_{\text{spins}} l_3 l_0^* &= \frac{(T+\omega)\left(4E_{\nu}^2 - 2MT - 4E_{\nu}(T+\omega) + \omega(2T+\omega)\right)}{2\sqrt{2}E_{\nu}\left(E_{\nu}-\omega\right)\sqrt{MT}} \,, \\ \sum_{\text{spins}} l_3 l_3^* &= \frac{(T+\omega)^2\left(4E_{\nu}^2 - 2MT - 4E_{\nu}(T+\omega) + \omega(2T+\omega)\right)}{4E_{\nu}MT\left(E_{\nu}-\omega\right)} \\ \sum_{\text{spins}} \frac{1}{2}(\mathbf{l}\cdot\mathbf{l}^* - l_3 l_3^*) &= \frac{\left(2MT - \omega(2T+\omega)\right)\left(4E_{\nu}^2 + 2MT - 4E_{\nu}(T+\omega) + \omega(2T+\omega)\right)}{8E_{\nu}MT\left(E_{\nu}-\omega\right)} \\ \sum_{\text{spins}} \frac{-i}{2}(\mathbf{l}\times\mathbf{l}^*)_3 &= \frac{\left(2E_{\nu}-\omega\right)\left(2MT - \omega(2T+\omega)\right)}{2\sqrt{2}E_{\nu}\left(E_{\nu}-\omega\right)\sqrt{MT}} \,. \end{split}$$

$$\begin{split} &\frac{1}{2J_i+1}\sum_{M_i,M_f}|\langle f|\,\hat{H}_{\text{eff}}\,|i\rangle\,|^2 = \\ &\frac{G^2}{2}\frac{4\pi}{2J_i+1}\left\{\sum_{J\geq 1}\left[\frac{1\cdot\mathbf{l}^*-l_3l_3^*}{2}\left(|\langle J_f|\,\hat{\mathcal{T}}_J^{\text{mag}}(q)\,|J_i\rangle\,|^2+|\langle J_f|\,\hat{\mathcal{T}}_J^{\text{el}}(q)\,|J_i\rangle\,|^2\right)\right.\\ &\left.-i\frac{1\times\mathbf{l}^*}{2}\left(2\text{Re}\,\langle J_f|\,\hat{\mathcal{T}}_J^{\text{mag}}(q)\,|J_i\rangle\,\langle J_f|\,\hat{\mathcal{T}}_J^{\text{el}}(q)\,|J_i\rangle^*\right)\right]+\sum_{J\geq 0}\left[l_3l_3^*\right)\langle J_f|\,\hat{\mathcal{L}}_J(q)\,|J_i\rangle\,|^2\\ &\left.+l_0l_0^*|\,\langle J_f|\,\hat{\mathcal{M}}_J(q)\,|J_i\rangle\,|^2\right)-2\text{Re}\left(l_3l_0^*\,\langle J_f|\,\hat{\mathcal{L}}_J(q)\,|J_i\rangle\,\langle J_f|\,\hat{\mathcal{M}}_J(q)\,|J_i\rangle^*\right)\right]\right\},\end{split}$$

Let's understand these a bit better

$$l_{3}l_{0}^{*} = \frac{T+\omega}{\sqrt{2MT}} l_{0}l_{0}^{*} \approx \frac{T+\omega}{|\mathbf{q}|} l_{0}l_{0}^{*},$$

$$l_{3}l_{3}^{*} = \frac{(T+\omega)^{2}}{2MT} l_{0}l_{0}^{*} \approx \left(\frac{T+\omega}{|\mathbf{q}|}\right)^{2} l_{0}l_{0}^{*}.$$
Suppressed
$$doubly$$

$$doubly$$
Suppressed

$$\left(\mathbf{l}\cdot\mathbf{l}^* - l_3 l_3^*\right) \approx \left(1 - \frac{\omega^2}{|\mathbf{q}|^2}\right) \left(l_0 l_0^* + \frac{|\mathbf{q}|^2}{E_{\nu} \left(E_{\nu} - \omega\right)}\right)$$

 $T \ll \omega$ and $\omega/|\mathbf{q}| \sim 10\%$ or less

$$\begin{split} \sum_{\text{spins}} l_0 l_0^* &= \frac{4E_\nu^2 - 4E_\nu(T+\omega) - 2MT + \omega(2T+\omega)}{2E_\nu(E_\nu - \omega)} \,, \\ \sum_{\text{spins}} l_3 l_0^* &= \frac{(T+\omega)\left(4E_\nu^2 - 2MT - 4E_\nu(T+\omega) + \omega(2T+\omega)\right)}{2\sqrt{2}E_\nu\left(E_\nu - \omega\right)\sqrt{MT}} \,, \\ \sum_{\text{spins}} l_3 l_3^* &= \frac{(T+\omega)^2\left(4E_\nu^2 - 2MT - 4E_\nu(T+\omega) + \omega(2T+\omega)\right)}{4E_\nu MT\left(E_\nu - \omega\right)} \\ \sum_{\text{spins}} \frac{1}{2} (\mathbf{l} \cdot \mathbf{l}^* - l_3 l_3^*) &= \frac{(2MT - \omega(2T+\omega))\left(4E_\nu^2 + 2MT - 4E_\nu(T+\omega) + \omega(2T+\omega)\right)}{8E_\nu MT\left(E_\nu - \omega\right)} \\ \sum_{\text{spins}} \frac{-i}{2} (\mathbf{l} \times \mathbf{l}^*)_3 &= \frac{(2E_\nu - \omega)\left(2MT - \omega(2T+\omega)\right)}{2\sqrt{2}E_\nu\left(E_\nu - \omega\right)\sqrt{MT}} \,. \end{split}$$

$$\begin{split} &\frac{1}{2J_i+1}\sum_{M_i,M_f}|\langle f|\,\hat{H}_{\text{eff}}\,|i\rangle\,|^2 = \\ &\frac{G^2}{2}\frac{4\pi}{2J_i+1}\left\{\sum_{J\geq 1}\left(\underbrace{1\cdot l^*-l_3l_3^*}{2}\right)\langle J_f|\,\hat{\mathcal{T}}_J^{\text{mag}}(q)\,|J_i\rangle\,|^2 + |\langle J_f|\,\hat{\mathcal{T}}_J^{\text{el}}(q)\,|J_i\rangle\,|^2\right) \\ &-i\frac{1\times l^*}{2}\left(2\text{Re}\,\langle J_f|\,\hat{\mathcal{T}}_J^{\text{mag}}(q)\,|J_i\rangle\,\langle J_f|\,\hat{\mathcal{T}}_J^{\text{el}}(q)\,|J_i\rangle^*\right)\right] + \sum_{J\geq 0}\left[l_3l_3^*\left(|\langle J_f|\,\hat{\mathcal{L}}_J(q)\,|J_i\rangle\,|^2\right) \\ &+l_0l_0^*|\,\langle J_f|\,\hat{\mathcal{M}}_J(q)\,|J_i\rangle\,|^2\right) - 2\text{Re}\left(l_3l_0^*\,\langle J_f|\,\hat{\mathcal{L}}_J(q)\,|J_i\rangle\,\langle J_f|\,\hat{\mathcal{M}}_J(q)\,|J_i\rangle^*\right)\right]\right\},\end{split}$$

Let's understand these a bit better

$$l_{3}l_{0}^{*} = \frac{T+\omega}{\sqrt{2MT}} l_{0}l_{0}^{*} \approx \frac{T+\omega}{|\mathbf{q}|} l_{0}l_{0}^{*},$$
Suppressed
$$l_{3}l_{3}^{*} = \frac{(T+\omega)^{2}}{2MT} l_{0}l_{0}^{*} \approx \left(\frac{T+\omega}{|\mathbf{q}|}\right)^{2} l_{0}l_{0}^{*}.$$
Suppressed
Suppressed

$$(\mathbf{l} \cdot \mathbf{l}^* - l_3 l_3^*) \approx \left(1 - \frac{\omega^2}{|\mathbf{q}|^2}\right) \left(l_0 l_0^* + \frac{|\mathbf{q}|^2}{E_{\nu} \left(E_{\nu} - \omega\right)}\right)$$

Always larger

 $T \ll \omega$ and $\omega/|\mathbf{q}| \sim 10\%$ or less

$$\begin{split} \sum_{\text{spins}} l_0 l_0^* &= \frac{4E_\nu^2 - 4E_\nu(T+\omega) - 2MT + \omega(2T+\omega)}{2E_\nu(E_\nu - \omega)} \,, \\ \sum_{\text{spins}} l_3 l_0^* &= \frac{(T+\omega)\left(4E_\nu^2 - 2MT - 4E_\nu(T+\omega) + \omega(2T+\omega)\right)}{2\sqrt{2}E_\nu\left(E_\nu - \omega\right)\sqrt{MT}} \,, \\ \sum_{\text{spins}} l_3 l_3^* &= \frac{(T+\omega)^2\left(4E_\nu^2 - 2MT - 4E_\nu(T+\omega) + \omega(2T+\omega)\right)}{4E_\nu MT\left(E_\nu - \omega\right)} \\ \sum_{\text{spins}} \frac{1}{2} (\mathbf{l} \cdot \mathbf{l}^* - l_3 l_3^*) = \frac{(2MT - \omega(2T+\omega))\left(4E_\nu^2 + 2MT - 4E_\nu(T+\omega) + \omega(2T+\omega)\right)}{8E_\nu MT\left(E_\nu - \omega\right)} \\ \sum_{\text{spins}} \frac{-i}{2} (\mathbf{l} \times \mathbf{l}^*)_3 &= \frac{(2E_\nu - \omega)\left(2MT - \omega(2T+\omega)\right)}{2\sqrt{2}E_\nu\left(E_\nu - \omega\right)\sqrt{MT}} \,. \end{split}$$

$$\begin{split} & \frac{1}{2J_i + 1} \sum_{M_i, M_f} |\langle f| \, \hat{H}_{\text{eff}} \, |i\rangle |^2 = \\ & \frac{G^2}{2} \frac{4\pi}{2J_i + 1} \left\{ \sum_{J \ge 1} \left[\frac{1 \cdot \mathbf{l}^* - l_3 l_3^*}{2} \left(|\langle J_f| \, \hat{\mathcal{T}}_J^{\text{mag}}(q) \, |J_i\rangle |^2 + |\langle J_f| \, \hat{\mathcal{T}}_J^{\text{el}}(q) \, |J_i\rangle |^2 \right) \right. \\ & \left. - i \frac{1 \times \mathbf{l}^*}{2} \left(2 \text{Re} \, \langle J_f| \, \hat{\mathcal{T}}_J^{\text{mag}}(q) \, |J_i\rangle \, \langle J_f| \, \hat{\mathcal{T}}_J^{\text{el}}(q) \, |J_i\rangle^* \right) \right] + \sum_{J \ge 0} \left[l_3 l_3^* \left(|\langle J_f| \, \hat{\mathcal{L}}_J(q) \, |J_i\rangle |^2 + l_3 l_3^* \left(|\langle J_f| \, \hat{\mathcal{L}}_J(q) \, |J_i\rangle |^2 \right) \right] \right] \right\} , \end{split}$$

On the other hand... if $T \rightarrow T_{\min} = > \omega \approx |\mathbf{q}|$

$$l_{3}l_{0}^{*} = \frac{T + \omega}{\sqrt{2MT}} l_{0}l_{0}^{*} \approx \frac{T + \omega}{|\mathbf{q}|} l_{0}l_{0}^{*},$$
$$l_{3}l_{3}^{*} = \frac{(T + \omega)^{2}}{2MT} l_{0}l_{0}^{*} \approx \left(\frac{T + \omega}{|\mathbf{q}|}\right)^{2} l_{0}l_{0}^{*}.$$

$$(\mathbf{l} \cdot \mathbf{l}^* - l_3 l_3^*) \approx \left(1 - \frac{\omega^2}{|\mathbf{q}|^2}\right) \left(l_0 l_0^* + \frac{|\mathbf{q}|^2}{E_{\nu} \left(E_{\nu} - \omega\right)}\right)$$

$$l_0 l_0^* \approx l_3 l_0^* \approx l_3 l_3^*$$
 and
 $(\mathbf{l} \cdot \mathbf{l} - l_3 l_3^*) \ll l_0 l_0^*$

$$\begin{split} \sum_{\text{spins}} l_0 l_0^* &= \frac{4E_\nu^2 - 4E_\nu(T+\omega) - 2MT + \omega(2T+\omega)}{2E_\nu(E_\nu - \omega)} \,, \\ \sum_{\text{spins}} l_3 l_0^* &= \frac{(T+\omega)\left(4E_\nu^2 - 2MT - 4E_\nu(T+\omega) + \omega(2T+\omega)\right)}{2\sqrt{2}E_\nu\left(E_\nu - \omega\right)\sqrt{MT}} \,, \\ \sum_{\text{spins}} l_3 l_3^* &= \frac{(T+\omega)^2\left(4E_\nu^2 - 2MT - 4E_\nu(T+\omega) + \omega(2T+\omega)\right)}{4E_\nu MT\left(E_\nu - \omega\right)} \\ \sum_{\text{spins}} \frac{1}{2} (\mathbf{l} \cdot \mathbf{l}^* - l_3 l_3^*) &= \frac{(2MT - \omega(2T+\omega))\left(4E_\nu^2 + 2MT - 4E_\nu(T+\omega) + \omega(2T+\omega)\right)}{8E_\nu MT\left(E_\nu - \omega\right)} \\ \sum_{\text{spins}} \frac{-i}{2} (\mathbf{l} \times \mathbf{l}^*)_3 &= \frac{(2E_\nu - \omega)\left(2MT - \omega(2T+\omega)\right)}{2\sqrt{2}E_\nu\left(E_\nu - \omega\right)\sqrt{MT}} \,. \end{split}$$

Shell Model Spectra

Calculated using NuShellX@MSU assuming the jj56pn model space and khhe interaction

About 100K states for TI-203 1393 states for TI-205

Cross sections results

Relative contributions to the cross section

At about $E_{\nu} \sim 35 \,\,\mathrm{MeV}\,$ CL becomes dominant

Transverse is always dominant

Multipole contributions to the cross section

- J = 1 transitions dominate up to $E_{\nu} \sim 20 \text{ MeV}$ - For $E_{\nu} > 20$ MeV, J = 2 transitions dominate

- J = 1 transitions dominate up to $E_{\nu} \sim 40 \text{ MeV}$ - For $E_{\nu} > 40$ MeV, J = 2 transitions dominate

CEvNS dominates by far

Inelastic vs CEvNS

Inelastic vs CEvNS

CEvNS and inelastic scattering become comparable

Inelastic cross section dominated by axial vector contribution and J = 1 transitions

Vector vs axial vector

Solar neutrino-nucleus scattering spectra

Usual CEvNS spectra

Solar neutrino-nucleus scattering spectra

CEvNS vs Inelastic spectra

CEvNS vs Inelastic spectra

Summary

- Overview of Donnelly Walecka spherical decomposition method
- Shell Model calculations for evaluating the nuclear matrix elements
- Formalism in terms of recoil energy
- Inelastic solar neutrino scattering of stable Thallium isotopes
- Compared to CEvNS, inelastic contributions are found to be rather suppressed (this might be different for other nuclei)

Thank you for your attention

The research project was supported by the Hellenic Foundation for Research and Innovation (H.F.R.I.) under the "3rd Call for H.F.R.I. Research Projects to support Post-Doctoral Researchers" (Project Number: 7036)

Back up slides

Multipole expansion of the hadronic current

$$\hat{H}_{eff} = rac{G}{\sqrt{2}}\int d^3\mathbf{x} \hat{j}^{lept}_{\mu}(\mathbf{x}) \hat{\mathcal{J}}^{\mu}(\mathbf{x}) \,,$$

- Leptonic current ME, between an initial $|\ell_i\rangle$ and a final state $|\ell_f\rangle$
- Expand the plane wave as:

$$e^{i\mathbf{q}\cdot\mathbf{x}} = \sum_{l} i^{l} \sqrt{4\pi (2)}$$

Evaluating for $\lambda = \pm 1$, one finds

$$\mathbf{e}_{\mathbf{q}\lambda}\mathbf{e}^{i\mathbf{q}\cdot\mathbf{x}} = -\sum_{J\geq 1}^{\infty}\sqrt{2\pi(2J+1)}i^{J}\Big\{\lambda j_{J}(
ho)\mathbf{Y}_{JJ1}^{\lambda} + rac{1}{\kappa}\mathbf{
abla} imes \Big[j_{J}(
ho)\mathbf{Y}_{JJ1}^{\lambda}\Big]\Big\},$$

and for $\lambda = 0$

 $\mathbf{e}_{\mathbf{q}0}e^{i\mathbf{q}\cdot\mathbf{x}}=\frac{-i}{n}$

T.W. Donnelly and J.D.Walecka, Nucl. Phys. A 274 (1976) 368

At low and intermediate energies, any semi-leptonic process is described by an effective interaction Hamiltonian, written in terms of the leptonic \hat{j}_{μ}^{lept} and hadronic $\hat{\mathcal{J}}^{\mu}$ currents as

 $\langle \ell_f | \hat{j}^{\mathrm{lept}}_{\mu} | \ell_i
angle = \ell_{\mu} \, e^{-i \mathbf{q} \cdot \mathbf{x}} \, .$

Define a complete orthonormal set of spatial unit vectors: $I = \sum_{\lambda=0,\pm 1} I_{\lambda} e_{\lambda}^{\dagger}$

$$\overline{2(l+1)}j_l(\rho)Y_{l0}(\Omega_x), \quad \rho=\kappa|\mathbf{x}|,\kappa=|\mathbf{q}|$$

The Clebsch-Gordan coefficient limits the sum on I to three terms, I = J and $J \pm 1$.

$$\sum_{J\geq 0}^{\infty}\sqrt{4\pi(2J+1)}i^{J}\boldsymbol{
abla}\left[j_{J}(
ho)Y_{J0}
ight]\,.$$

Substituting one finds

$$\langle f | \hat{H}_{eff} | i \rangle = -\frac{G}{\sqrt{2}} \langle f | \left\{ \sum_{J \ge 0} \sqrt{4\pi (2J+1)} (-i)^J \left(I_3 \hat{\mathcal{L}}_{J0}(\kappa) - I_0 \hat{\mathcal{M}}_{J0}(\kappa) \right) \right\}$$

operators, acting on the nuclear Hilbert space and having rank J• four operators are defined for the polar vector component $\hat{J}_{\lambda} = (\hat{\rho}, \hat{J})$ and

$$\begin{split} \hat{\mathcal{M}}_{JM}(\kappa) &= \hat{M}_{JM}^{coul} - \hat{M}_{JM}^{coul5} = \int d\mathbf{r} M_{M}^{J}(\kappa \mathbf{r}) \hat{\mathcal{J}}_{0}(\mathbf{r}), \\ \hat{\mathcal{L}}_{JM}(\kappa) &= \hat{\mathcal{L}}_{JM} - \hat{\mathcal{L}}_{JM}^{5} = i \int d\mathbf{r} \left(\frac{1}{\kappa} \nabla M_{M}^{J}(\kappa \mathbf{r})\right) \cdot \hat{\mathcal{J}}(\mathbf{r}), \\ \hat{\mathcal{T}}_{JM}^{el}(\kappa) &= \hat{\mathcal{T}}_{JM}^{el} - \hat{\mathcal{T}}_{JM}^{el5} = \int d\mathbf{r} \left(\frac{1}{q} \nabla \times \mathbf{M}_{M}^{JJ}(\kappa \mathbf{r})\right) \cdot \hat{\mathcal{J}}(\mathbf{r}), \\ \hat{\mathcal{T}}_{JM}^{mag}(\kappa) &= \hat{\mathcal{T}}_{JM}^{mag} - \hat{\mathcal{T}}_{JM}^{mag5} = \int d\mathbf{r} \mathbf{M}_{M}^{JJ}(\kappa \mathbf{r}) \cdot \hat{\mathcal{J}}(\mathbf{r}), \end{split}$$

$$\begin{split} \hat{\mathcal{M}}_{JM}(\kappa) &= \hat{\mathcal{M}}_{JM}^{coul5} - \hat{\mathcal{M}}_{JM}^{coul5} = \int d\mathbf{r} \mathcal{M}_{M}^{J}(\kappa \mathbf{r}) \hat{\mathcal{J}}_{0}(\mathbf{r}), \\ \hat{\mathcal{L}}_{JM}(\kappa) &= \hat{\mathcal{L}}_{JM} - \hat{\mathcal{L}}_{JM}^{5} = i \int d\mathbf{r} \left(\frac{1}{\kappa} \nabla \mathcal{M}_{M}^{J}(\kappa \mathbf{r})\right) \cdot \hat{\mathcal{J}}(\mathbf{r}), \\ \hat{\mathcal{T}}_{JM}^{el}(\kappa) &= \hat{\mathcal{T}}_{JM}^{el} - \hat{\mathcal{T}}_{JM}^{el5} = \int d\mathbf{r} \left(\frac{1}{q} \nabla \times \mathbf{M}_{M}^{JJ}(\kappa \mathbf{r})\right) \cdot \hat{\mathcal{J}}(\mathbf{r}), \\ \hat{\mathcal{T}}_{JM}^{mag}(\kappa) &= \hat{\mathcal{T}}_{JM}^{mag} - \hat{\mathcal{T}}_{JM}^{mag5} = \int d\mathbf{r} \mathbf{M}_{M}^{JJ}(\kappa \mathbf{r}) \cdot \hat{\mathcal{J}}(\mathbf{r}), \end{split}$$

$$\begin{split} \hat{\mathcal{M}}_{JM}(\kappa) &= \hat{\mathcal{M}}_{JM}^{coul5} - \hat{\mathcal{M}}_{JM}^{coul5} = \int d\mathbf{r} \mathcal{M}_{M}^{J}(\kappa \mathbf{r}) \hat{\mathcal{J}}_{0}(\mathbf{r}), \\ \hat{\mathcal{L}}_{JM}(\kappa) &= \hat{\mathcal{L}}_{JM} - \hat{\mathcal{L}}_{JM}^{5} = i \int d\mathbf{r} \left(\frac{1}{\kappa} \nabla \mathcal{M}_{M}^{J}(\kappa \mathbf{r})\right) \cdot \hat{\mathcal{J}}(\mathbf{r}), \\ \hat{\mathcal{T}}_{JM}^{el}(\kappa) &= \hat{\mathcal{T}}_{JM}^{el} - \hat{\mathcal{T}}_{JM}^{el5} = \int d\mathbf{r} \left(\frac{1}{q} \nabla \times \mathbf{M}_{M}^{JJ}(\kappa \mathbf{r})\right) \cdot \hat{\mathcal{J}}(\mathbf{r}), \\ \hat{\mathcal{T}}_{JM}^{mag}(\kappa) &= \hat{\mathcal{T}}_{JM}^{mag} - \hat{\mathcal{T}}_{JM}^{mag5} = \int d\mathbf{r} \mathbf{M}_{M}^{JJ}(\kappa \mathbf{r}) \cdot \hat{\mathcal{J}}(\mathbf{r}), \end{split}$$

$$\begin{split} \hat{\mathcal{M}}_{JM}(\kappa) &= \hat{M}_{JM}^{coul} - \hat{M}_{JM}^{coul5} = \int d\mathbf{r} M_{M}^{J}(\kappa \mathbf{r}) \hat{\mathcal{J}}_{0}(\mathbf{r}), \\ \hat{\mathcal{L}}_{JM}(\kappa) &= \hat{\mathcal{L}}_{JM} - \hat{\mathcal{L}}_{JM}^{5} = i \int d\mathbf{r} \left(\frac{1}{\kappa} \nabla M_{M}^{J}(\kappa \mathbf{r})\right) \cdot \hat{\mathcal{J}}(\mathbf{r}), \\ \hat{\mathcal{T}}_{JM}^{el}(\kappa) &= \hat{\mathcal{T}}_{JM}^{el} - \hat{\mathcal{T}}_{JM}^{el5} = \int d\mathbf{r} \left(\frac{1}{q} \nabla \times \mathbf{M}_{M}^{JJ}(\kappa \mathbf{r})\right) \cdot \hat{\mathcal{J}}(\mathbf{r}), \\ \hat{\mathcal{T}}_{JM}^{mag}(\kappa) &= \hat{\mathcal{T}}_{JM}^{mag} - \hat{\mathcal{T}}_{JM}^{mag5} = \int d\mathbf{r} \mathbf{M}_{M}^{JJ}(\kappa \mathbf{r}) \cdot \hat{\mathcal{J}}(\mathbf{r}), \end{split}$$

lensor operators

$$\overline{(2J+1)}(-i)^J I_\lambda \left(\lambda \hat{\mathcal{T}}_{J-\lambda}^{mag}(\kappa) + \hat{\mathcal{T}}_{J-\lambda}^{el}(\kappa)
ight) \Bigg\} |i
angle.$$

The multipole expansion procedure gives 8 independent irreducible tensor multipole • four for the the axial vector component $\hat{J}_{\lambda}^5 = (\hat{\rho}^5, \hat{\mathbf{J}}^5)$ of the hadronic current

the V-A structure of the weak interaction is adopted: $\hat{\mathcal{J}}_{\mu} = \hat{J}_{\mu} - \hat{J}_{\mu}^5 = (\hat{\rho}, \hat{\mathbf{J}}) - (\hat{\rho}^5, \hat{\mathbf{J}}^5)$.

Required nuclear matrix elements

We proceed by defining

- $\hat{\mathcal{M}}_{JM}(\kappa r) = \hat{M}_{JM}^{coul} + \hat{M}_{JM}^{coul5}$
 - $= F_1^V M_M^J(\kappa r) -$
 - $\hat{\mathcal{L}}_{JM}(\kappa r) = \hat{\mathcal{L}}_{JM} + \hat{\mathcal{L}}_{JM}^5$
 - $= \frac{q_0}{\kappa} F_1^V M_M^J(\kappa r)$ $\hat{\mathcal{T}}^{el}_{JM}(\kappa r) = \hat{T}^{el}_{JM} + \hat{T}^{el5}_{JM}$
 - $= \frac{\kappa}{M_{N}} [F_{1}^{V} \Delta_{M}^{'J} (\kappa$

$$\begin{aligned} \hat{\mathcal{T}}_{JM}^{mag}(\kappa r) &= \hat{T}_{JM}^{mag} + \hat{T}_{JM}^{magn5} \\ &= -\frac{q}{M_N} [F_1^V \Delta_M^J(\kappa r) - \frac{1}{2} \mu^V \Sigma_M^{'J}(\kappa r)] + i F_A \Sigma_M^J(\kappa r)], \end{aligned}$$

with $F_X(Q^2)$, X=1,A,P and $\mu^V(Q^2)$ being the free nucleon form factors CVC Theory: only seven operators are linearly independent J. D. Walecka, Theoretical Nuclear And Subnuclear Physics, World Scientific, Imperial College Press

$$i\frac{\kappa}{M_N}[F_A\Omega^J_M(\kappa r)+\frac{1}{2}(F_A+q_0F_P)\Sigma^{\prime\prime}_M(\kappa r)],$$

$$)+iF_{A}\Sigma_{M}^{^{\prime\prime}J}(\kappa r)],$$

$$\kappa r) + \frac{1}{2} \mu^V \Sigma^J_M(\kappa r)] + i F_A \Sigma^{'J}_M(\kappa r)],$$

• Polar-vector: Coulomb M_{IM}^{coul} , longitudinal L_{JM} , transverse electric T_{IM}^{el} [with normal parity $\pi = (-)^{J}$ and transverse magnetic T_{IM}^{mag} [with abnormal parity $\pi = (-)^{J+1}$]. • Axial-vector: M_{IM}^{coul5} , L_{IM}^5 , T_{IM}^{el5} (with abnormal parity) and T_{IM}^{mag5} (with normal parity).

Multipole decomposition

Interaction Hamiltonian for neutral-current (NC) neutrino-nucleus scattering

$$\langle f | \hat{H}_{eff} | i
angle = rac{G_F}{\sqrt{2}} \int d^3 \mathbf{x} \langle \ell_f | \hat{j}^{lept}_{\mu}(\mathbf{x}) | \ell_i
angle \langle J_f | \hat{\mathcal{J}}^{\mu}(\mathbf{x}) | J_i
angle$$

with $\langle \ell_f | \hat{j}_{\mu}^{lept} | \ell_i \rangle = \bar{\nu}_{\alpha} \gamma_{\mu} (1 - \gamma_5) \nu_{\alpha} e^{-i\mathbf{q}\cdot\mathbf{x}}, \quad \mathbf{q} : 3 - \text{momentum transfer}$ In the Donnelly-Walecka multipole decomposition method, the NC, double diff. SM cross ۲ section from an initial $|J_i\rangle$ to a final $|J_f\rangle$ nuclear state (constructed explicitly through QRPA realistic nuclear structure calculations), reads

 ε_i (ε_f) is the initial (final) neutrino energy and ω is the nucleus excitation energy. • Contributions to σ_{CL}^{J} (Coulomb-longitudinal) and σ_{T}^{J} (transverse electric-magnetic) components T. W. Donnelly and R. D. Peccei, Phys. Rept. 50 (1979) 1

$$\sigma_{\rm CL}^{J} = (1 + a\cos\theta)|\langle J_{f}||\hat{\mathcal{M}}_{J}(\kappa)||J_{i}\rangle|^{2} + \left[\frac{\omega}{\kappa}(1 + a\cos\theta) + d\right] 2\Re e|\langle \sigma_{\rm T}^{J}| = (1 - a\cos\theta + b\sin^{2}\theta)\left[|\langle J_{f}||\hat{\mathcal{T}}|||\hat{\mathcal{T}}||\hat{\mathcal{T}}||\hat{\mathcal{T}}|||\hat{\mathcal{T}}|||\hat{\mathcal{T}}||\hat{\mathcal{T}}||$$

$$\frac{\varepsilon_i \varepsilon_f}{J_i + 1} \left(\sum_{J=0}^{\infty} \sigma_{\text{CL}}^J + \sum_{J=1}^{\infty} \sigma_{\text{T}}^J \right) ,$$

 $(1 + a\cos\theta - 2b\sin^2\theta)|\langle J_f||\hat{\mathcal{L}}_J(\kappa)||J_i\rangle|^2$ $\langle J_f || \hat{\mathcal{L}}_J(\kappa) || J_i
angle || \langle J_f || \hat{\mathcal{M}}_J(\kappa) || J_i
angle |^* ,$ $\hat{\mathcal{T}}_{J}^{mag}(\kappa)||J_{i}
angle|^{2}+|\langle J_{f}||\hat{\mathcal{T}}_{J}^{el}(\kappa)||J_{i}
angle|^{2}$ $d \left| 2 \Re e |\langle J_f || \hat{\mathcal{T}}_J^{mag}(\kappa) || J_i \rangle || \langle J_f || \hat{\mathcal{T}}_J^{el}(\kappa) || J_i \rangle |^* \right|$

where the parameters a = 1, $b = \varepsilon_i \varepsilon_f / \kappa^2$, d = 0 are obtained from the kinematics and $\kappa = |\mathbf{q}|$

The seven basic nuclear operators

Seven new operators are defined (proton-neutron representation) as

0

$$\begin{split} T_{1}^{JM} &\equiv M_{M}^{J}(\kappa\mathbf{r}) = \delta_{LJ} j_{L}(\kappa\mathbf{r}) Y_{M}^{L}(\hat{r}), \\ T_{2}^{JM} &\equiv \Sigma_{M}^{J}(\kappa\mathbf{r}) = \mathbf{M}_{M}^{JJ} \cdot \boldsymbol{\sigma}, \\ T_{3}^{JM} &\equiv \Sigma_{M}^{\prime J}(\kappa\mathbf{r}) = -i \left[\frac{1}{\kappa} \nabla \times \mathbf{M}_{M}^{JJ}(\kappa\mathbf{r})\right] \cdot \boldsymbol{\sigma}, \\ T_{4}^{JM} &\equiv \Sigma_{M}^{\prime \prime J}(\kappa\mathbf{r}) = \left[\frac{1}{\kappa} \nabla M_{M}^{J}(\kappa\mathbf{r})\right] \cdot \boldsymbol{\sigma}, \\ T_{5}^{JM} &\equiv \Delta_{M}^{J}(\kappa\mathbf{r}) = \mathbf{M}_{M}^{JJ}(\kappa\mathbf{r}) \cdot \frac{1}{\kappa} \nabla, \\ T_{6}^{JM} &\equiv \Delta_{M}^{\prime J}(\kappa\mathbf{r}) = -i \left[\frac{1}{\kappa} \nabla \times \mathbf{M}_{M}^{JJ}(\kappa\mathbf{r})\right] \cdot \frac{1}{\kappa} \nabla, \\ T_{7}^{JM} &\equiv \Omega_{M}^{J}(\kappa\mathbf{r}) = M_{M}^{J}(\kappa\mathbf{r})\boldsymbol{\sigma} \cdot \frac{1}{\kappa} \nabla. \end{split}$$

$$\begin{split} T_{1}^{JM} &\equiv M_{M}^{J}(\kappa\mathbf{r}) = \delta_{LJ} j_{L}(\kappa\mathbf{r}) Y_{M}^{L}(\hat{r}), \\ T_{2}^{JM} &\equiv \Sigma_{M}^{J}(\kappa\mathbf{r}) = \mathsf{M}_{M}^{JJ} \cdot \boldsymbol{\sigma}, \\ T_{3}^{JM} &\equiv \Sigma_{M}^{\prime J}(\kappa\mathbf{r}) = -i \left[\frac{1}{\kappa} \nabla \times \mathsf{M}_{M}^{JJ}(\kappa\mathbf{r})\right] \cdot \boldsymbol{\sigma}, \\ T_{4}^{JM} &\equiv \Sigma_{M}^{\prime \prime J}(\kappa\mathbf{r}) = \left[\frac{1}{\kappa} \nabla M_{M}^{J}(\kappa\mathbf{r})\right] \cdot \boldsymbol{\sigma}, \\ T_{5}^{JM} &\equiv \Delta_{M}^{J}(\kappa\mathbf{r}) = \mathsf{M}_{M}^{JJ}(\kappa\mathbf{r}) \cdot \frac{1}{\kappa} \nabla, \\ T_{6}^{JM} &\equiv \Delta_{M}^{\prime J}(\kappa\mathbf{r}) = -i \left[\frac{1}{\kappa} \nabla \times \mathsf{M}_{M}^{JJ}(\kappa\mathbf{r})\right] \cdot \frac{1}{\kappa} \nabla, \\ T_{7}^{JM} &\equiv \Omega_{M}^{J}(\kappa\mathbf{r}) = M_{M}^{J}(\kappa\mathbf{r})\boldsymbol{\sigma} \cdot \frac{1}{\kappa} \nabla. \end{split}$$

$$\begin{split} T_{1}^{JM} &\equiv M_{M}^{J}(\kappa\mathbf{r}) = \delta_{LJ} j_{L}(\kappa\mathbf{r}) Y_{M}^{L}(\hat{r}), \\ T_{2}^{JM} &\equiv \Sigma_{M}^{J}(\kappa\mathbf{r}) = \mathsf{M}_{M}^{JJ} \cdot \boldsymbol{\sigma}, \\ T_{3}^{JM} &\equiv \Sigma_{M}^{\prime J}(\kappa\mathbf{r}) = -i \left[\frac{1}{\kappa} \nabla \times \mathsf{M}_{M}^{JJ}(\kappa\mathbf{r})\right] \cdot \boldsymbol{\sigma}, \\ T_{4}^{JM} &\equiv \Sigma_{M}^{\prime \prime J}(\kappa\mathbf{r}) = \left[\frac{1}{\kappa} \nabla M_{M}^{J}(\kappa\mathbf{r})\right] \cdot \boldsymbol{\sigma}, \\ T_{5}^{JM} &\equiv \Delta_{M}^{J}(\kappa\mathbf{r}) = \mathsf{M}_{M}^{JJ}(\kappa\mathbf{r}) \cdot \frac{1}{\kappa} \nabla, \\ T_{6}^{JM} &\equiv \Delta_{M}^{\prime J}(\kappa\mathbf{r}) = -i \left[\frac{1}{\kappa} \nabla \times \mathsf{M}_{M}^{JJ}(\kappa\mathbf{r})\right] \cdot \frac{1}{\kappa} \nabla, \\ T_{7}^{JM} &\equiv \Omega_{M}^{J}(\kappa\mathbf{r}) = -i \left[\frac{1}{\kappa} \nabla \times \mathsf{M}_{M}^{JJ}(\kappa\mathbf{r})\right] \cdot \frac{1}{\kappa} \nabla, \end{split}$$

$$\begin{split} T_{1}^{JM} &\equiv M_{M}^{J}(\kappa\mathbf{r}) = \delta_{LJ} j_{L}(\kappa\mathbf{r}) Y_{M}^{L}(\hat{r}), \\ T_{2}^{JM} &\equiv \Sigma_{M}^{J}(\kappa\mathbf{r}) = \mathsf{M}_{M}^{JJ} \cdot \boldsymbol{\sigma}, \\ T_{3}^{JM} &\equiv \Sigma_{M}^{\prime J}(\kappa\mathbf{r}) = -i \left[\frac{1}{\kappa} \nabla \times \mathsf{M}_{M}^{JJ}(\kappa\mathbf{r})\right] \cdot \boldsymbol{\sigma}, \\ T_{4}^{JM} &\equiv \Sigma_{M}^{\prime \prime J}(\kappa\mathbf{r}) = \left[\frac{1}{\kappa} \nabla M_{M}^{J}(\kappa\mathbf{r})\right] \cdot \boldsymbol{\sigma}, \\ T_{5}^{JM} &\equiv \Delta_{M}^{J}(\kappa\mathbf{r}) = \mathsf{M}_{M}^{JJ}(\kappa\mathbf{r}) \cdot \frac{1}{\kappa} \nabla, \\ T_{6}^{JM} &\equiv \Delta_{M}^{\prime J}(\kappa\mathbf{r}) = -i \left[\frac{1}{\kappa} \nabla \times \mathsf{M}_{M}^{JJ}(\kappa\mathbf{r})\right] \cdot \frac{1}{\kappa} \nabla, \\ T_{7}^{JM} &\equiv \Omega_{M}^{J}(\kappa\mathbf{r}) = M_{M}^{J}(\kappa\mathbf{r})\boldsymbol{\sigma} \cdot \frac{1}{\kappa} \nabla. \end{split}$$

$$\begin{split} T_{1}^{JM} &\equiv M_{M}^{J}(\kappa\mathbf{r}) = \delta_{LJ} j_{L}(\kappa\mathbf{r}) Y_{M}^{L}(\hat{r}), \\ T_{2}^{JM} &\equiv \Sigma_{M}^{J}(\kappa\mathbf{r}) = \mathbf{M}_{M}^{JJ} \cdot \boldsymbol{\sigma}, \\ T_{3}^{JM} &\equiv \Sigma_{M}^{\prime J}(\kappa\mathbf{r}) = -i \left[\frac{1}{\kappa} \nabla \times \mathbf{M}_{M}^{JJ}(\kappa\mathbf{r})\right] \cdot \boldsymbol{\sigma}, \\ T_{4}^{JM} &\equiv \Sigma_{M}^{\prime \prime J}(\kappa\mathbf{r}) = \left[\frac{1}{\kappa} \nabla M_{M}^{J}(\kappa\mathbf{r})\right] \cdot \boldsymbol{\sigma}, \\ T_{5}^{JM} &\equiv \Delta_{M}^{J}(\kappa\mathbf{r}) = \mathbf{M}_{M}^{JJ}(\kappa\mathbf{r}) \cdot \frac{1}{\kappa} \nabla, \\ T_{6}^{JM} &\equiv \Delta_{M}^{\prime J}(\kappa\mathbf{r}) = -i \left[\frac{1}{\kappa} \nabla \times \mathbf{M}_{M}^{JJ}(\kappa\mathbf{r})\right] \cdot \frac{1}{\kappa} \nabla, \\ T_{6}^{JM} &\equiv \Omega_{M}^{J}(\kappa\mathbf{r}) = M_{M}^{J}(\kappa\mathbf{r})\boldsymbol{\sigma} \cdot \frac{1}{\kappa} \nabla. \end{split}$$

$$\begin{split} T_{1}^{JM} &\equiv M_{M}^{J}(\kappa\mathbf{r}) = \delta_{LJ} j_{L}(\kappa\mathbf{r}) Y_{M}^{L}(\hat{r}), \\ T_{2}^{JM} &\equiv \Sigma_{M}^{J}(\kappa\mathbf{r}) = \mathbf{M}_{M}^{JJ} \cdot \boldsymbol{\sigma}, \\ T_{3}^{JM} &\equiv \Sigma_{M}^{'J}(\kappa\mathbf{r}) = -i \left[\frac{1}{\kappa} \nabla \times \mathbf{M}_{M}^{JJ}(\kappa\mathbf{r})\right] \cdot \boldsymbol{\sigma}, \\ T_{4}^{JM} &\equiv \Sigma_{M}^{''J}(\kappa\mathbf{r}) = \left[\frac{1}{\kappa} \nabla M_{M}^{J}(\kappa\mathbf{r})\right] \cdot \boldsymbol{\sigma}, \\ T_{5}^{JM} &\equiv \Delta_{M}^{J}(\kappa\mathbf{r}) = \mathbf{M}_{M}^{JJ}(\kappa\mathbf{r}) \cdot \frac{1}{\kappa} \nabla, \\ T_{6}^{JM} &\equiv \Delta_{M}^{'J}(\kappa\mathbf{r}) = -i \left[\frac{1}{\kappa} \nabla \times \mathbf{M}_{M}^{JJ}(\kappa\mathbf{r})\right] \cdot \frac{1}{\kappa} \nabla, \\ T_{6}^{JM} &\equiv \Omega_{M}^{J}(\kappa\mathbf{r}) = M_{M}^{J}(\kappa\mathbf{r})\boldsymbol{\sigma}. \end{split}$$

Closed compact analytic formulae for the single-particle reduced ME (upper) and many-body reduced ME (lower) for QRPA calculations, are deduced.

$$\langle (n_1\ell_1)j_1||T_j^J||(n_2\ell_2)j_2
angle = e^{-y}y^{eta/2}\sum_{\mu=0}^{n_{max}}\mathcal{P}_{\mu}^{i,\ J}y^{\mu}, \quad y = (\kappa b/2)^2, \quad n_{max} = (N_1 + N_2 - \beta)/2, \quad N_i = 2n_i + \ell_i$$

$$\langle f \| \widehat{T}^{J} \| \mathbf{0}_{gs}^{+} \rangle = \sum_{j_{2} \ge j_{1}} \frac{\langle j_{2} \| \widehat{T}^{J} \| j_{1} \rangle}{\widehat{f}} \left[X_{j_{2}j_{1}} u_{j_{2}}^{p(n)} v_{j_{1}}^{p(n)} + Y_{j_{2}j_{1}} v_{j_{2}}^{p(n)} u_{j_{1}}^{p(n)} \right]$$

V.Ch. Chasioti and T.S. Kosmas, Nucl. Phys. A 829 (2009) 234 P.G. Giannaka, D.K. Papoulias, T.S. Kosmas, unpublished (for any configuration $(j_1, j_2)J$)

reactor neutrinos

Coherent vs incoherent rates

π **DAR** neutrinos

Coherent vs incoherent rates

Solar neutrinos

