Exploring the Advantages of an Undoped, Cryogenic Csl Detector for CEvNS Experiments at the SNS with COHERENT

Charlie Prior

On behalf of the COHERENT Collaboration

History

- Refer back to D. Parno's talk
- Remember that the first measurement on Csl achieved:
 - a light yield of 13.35 PE/keV
 - a quenching factor of ~8-10%
 - a threshold of ~8 keV_{nr} or ~700 eV_{ee}
- How do we improve?

Quenching Factors

- Energy-dependent (and detectordependent) measure of detector response to a particular nuclear recoil
- Changing crystal properties, such as dopants and temperature, affects the quenching factor
- Currently undertaking a campaign to measure QF on 40 K CsI at TUNL

Quenching Factors

Future!

- Increased light yield and QF will lower the threshold to roughly 500 eV_{nr}
- This will also improve detector timing and energy resolution
- Work underway to measure light yield and quenching factor on 40 K Csl

