

Dinesh Loomba on behalf of the MIGDAL collaboration University of New Mexico Magnificient CEvNS 13th June 2024, Valencia

Arkady Migdal

The Migdal Effect

A.B. Migdal, Ionization of atoms accompanying α - and β -decay , J. Phys. USSR 4 (1941) 449

Christopher McCabe Dark Matter at the dawn of discovery? -Heidelberg, 11th April 2018

XENON1T collab arXiv:1907.12771

D Loomba (MIGDAL)

Recent application to low mass DM has led to huge interest in Migdal

Migdal effect calculations reformulated by **M. Ibe et al.** with ionisation probabilities for atoms and recoil energies relevant to Dark Matter searches.

Published for SISSA by D Springer

RECEIVED: August 23, 2017 REVISED: January 15, 2018 ACCEPTED: March 8, 2018 PUBLISHED: March 30, 2018

Migdal effect in dark matter direct detection experiments

Masahiro Ibe,^{a,b} Wakutaka Nakano,^a Yutaro Shoji^a and Kazumine Suzuki^a

 ^a ICRR, The University of Tokyo, Kashiwa, Chiba 277-8582, Japan
 ^b Kavli IPMU (WPI), UTIAS, The University of Tokyo, Kashiwa, Chiba 277-8583, Japan

E-mail: ibe@icrr.u-tokyo.ac.jp, m156077@icrr.u-tokyo.ac.jp, yshoji@icrr.u-tokyo.ac.jp, ksuzuki@icrr.u-tokyo.ac.jp

So far ~ 200 citations of Ibe et al. Experiments using Migdal to enhance sensitivity to Light DM:

LUX, XENON1T, EDELWEISS,CDEX-1B, SENSEI, DarkSide-50...

Including targets: Ge, Si, Xe and Ar

D Loomba (MIGDAL)

Pre-2018 No Migdal limits

Migdal effect in dark matter direct detection experiments, Ibe et al arXiv:1707.07258 Today Dominated by Migdal

Detecting the Migdal effect

- The Migdal effect has not been measured

 needs validation!
- Many efforts underway (see B. Lenardo's talk)
- Our aim is to detect the Migdal topology electron and nuclear recoil tracks sharing a common vertex

→ Challenging!

P. Majewski, "OTPC for the observation of the Migdal effect in nuclear scattering", New Horizons in Time Projection Chambers, 2020

The Directional DM Community has pointed the way **for NRs**

CCD image of Fluorine Recoil

Projected dE/dx along track

N. Phan, PhD thesis, UNM (2016)

...for Migdal we also need to resolve <10 keV electron tracks, and measure their direction...

Challenging because electron tracks have **low dE/dx**, large fluctuations:

We need:

- low pressures
- fine granularity readouts
- high S/N, and
- Large dynamic range!

Phan, et al. JINST **15** P05012 (2020). arXiv:1703.09883

Plus we demonstrated we could cover the huge dynamic range:

• With GEM gain set such that DD NR's are stable:

(A. Mills, RD51, Nov 2021)

Plus we demonstrated we could cover the huge dynamic range:

• With GEM gain set such that DD NR's are stable:

(A. Mills, RD51, Nov 2021)

"Migdal Events"

Nuclear Recoil

E = 39 keVee

Migdal

Distance from track start (mm)

Electron

The MIGDAL experiment

Low-pressure gas: 50 Torr of CF₄

- To extend particle tracks
- Minimize gamma interactions

Readout

- Optical : Camera + photomultiplier tube
- Charge: GEMs + 120 ITO anode strips

TPC signal amplification

- 2 x glass-GEMs (Cu or Ni cladded)

High-yield neutron generator

- D-D: 2.47 MeV (10⁹n/s)
- Defined beam, "clear" through TPC

Electron and nuclear recoil tracks

- Migdal: NR+ER tracks, common vertex
- Cover dynamic range of NRs and ERs
- 5 keV electron threshold 5.9 keV X-rays from Fe-55 for calibration at threshold (5.2 keV photoelectron)

The MIGDAL optical-TPC

Two glass GEMs:

- active area: 10x10 cm²
- thickness: 550 μm
- OD /pitch: 170/280 μm
- active area: $10x10 \text{ cm}^2$
- total gain $\sim 10^5$

ITO strips:

- 120 strips
- width/pitch: 0.65/0.83 mm

2 field shaping Cu wires

Neutron Irradiation Lab for Electronics (NILE) facility at Rutherford Appleton Lab in the UK

Assembling at NILE

D Loomba (MIGDAL)

Experiment installation in the NILE bunker

MIGDAL experiment fully assembled at NILE

- Lead shield 0 10 cm
- Borated HDPE shield
 0 20 cm
- Collimator HDPE+ lead
 30 cm long

First Science Run – Summary

• The First Science run took place from the 17th of July to the 3rd of August.

- Data taken using D-D neutron generator recorded continuously during 10 hour long shifts. Significant fraction of empty frames due to low DD rate.
- Frames taken with 20 ms exposure time (vs.8.3 ms). Longer than planned due to problems with camera's Linux firmware.
- Data taking interspersed with regular calibration runs (⁵⁵Fe) to monitor the gain of the detector.
- **GEM dV increased** by a small amount each day to maintain constant gain.
- Total gain in GEMs tuned to a threshold required to fully resolved ⁵⁵Fe peak.
- Average spark rate ~ 7/min due to need for high dynamic range.
- Half the data is blinded.

Real-time gain calibration

⁵⁵Fe spectra automatically processed at the end of calibration runs

Summary of **gain** and gain **resolution** over the course of first science run from July 17th - Aug. 4th, 2023

Real-time analysis of CMOS data with YOLO (You Only Look Once)

<u>YOLOv8</u> is a state of the art *object detection* algorithm that **simultaneously locates** (draws a bounding box) and **identifies objects** of interest in an image

We train YOLOv8 on measured data to identify ERs, NRs, protons, alphas, sparks, camera afterglow, rolling shutter, etc.

Benefits:

- 1. Single-shot identification and analysis of tracks
- 2. Enables real time ⁵⁵Fe calibrations and ER/NR/etc event rate counting
- 3. Can identify multiple particle species within a continuous cluster
- 4. Not trained to find Migdals \rightarrow robust and doesn't need to be

trained on simulation!

Online, real-time analysis with YOLO

Particle species rates, dE/dx distributions, spectra, etc, automatically generated from YOLO pipeline \rightarrow Detector performance monitoring

YOLO applied to Migdal search

 Applied to unblinded dataset consisting of ~20 million 2,048 x 1,152 images at 120 fps

→ No longer a rare event search! These camera-only candidates require full 3D reconstruction using the ITO+PMT to derive final Migdal candidates

YOLO performance metrics

Train YOLO on **real data**, evaluate on **Migdals constructed using data NRs stitched to simulated ERs to derive efficiency.**

• Efficiency in MIGDAL ROI ($E_e > 5 \text{ keV}$) is ~40%

We quantify YOLO's ability to detect (faint!) ER in a Migdal event using:

 Fraction of significant pixels belonging to ER, f_{sigpix} (sig pixel is one where >1/3 of intensity belongs to ER)

Example Migdal-like event in DD + ⁵⁵Fe run (or why (3+1)-dim is needed!)

Example Migdal-like event in DD + ⁵⁵Fe run

Example Migdal-like event in DD + ⁵⁵Fe run

Migdal-like event...

Synchronizing with ITO signals:

Migdal-like event...

Timing information from ITO strips separates all 3 tracks in time. → NOT Migdal!

R&D for a MIGDAL Phase II

MIGDAL Phase II - Motivation

- Probe lower energies
- Attain higher rates

P. Cox *et al* 2023 *Phys. Rev. D* **107**, 035032 https://doi.org/10.1103/PhysRevD.107.035032

H.M. Araújo *et al* 2023 *Astropart. Phys.* **151** 102853 https://doi.org/10.1016/j.astropartphys.2023.102853

- Probing lower electron energies → higher rates
- Will require better spatial resolution → NID
- → NI-OTPC results motivate this R&D

Negative-ion OTPC

Hamamatsu ORCA-Quest

• Photon Resolving Power:

Radiment Glass-GEMs

• 270 micron pitch

~45 Torr CF ₄ + x Torr CS ₂					
	CS ₂ (Torr)	σ(μm)			
	0	~500			
	4	~150-200			

D. Loomba, UNM

Low diffusion, high spatial resolution enables detailed reconstruction of particle's trajectory:

- Head/tail of track
- Initial direction
- Range
- **dE/dx** (Bragg curve):

Charge readout(!) NI-TPC

Advantages of a NI *charge* readout TPC:

- Achieving high dynamic range does not require high gas gains
- Gas mixtures can be optimized for target atoms w/o worrying about light yield
- The detector will be built and characterized in the next year or two

Summary

- The MIGDAL experiment aims to perform an unambiguous observation of the Migdal effect.
- Science runs with DD neutron source ongoing at the NILE facility at RAL.
- The detector performed well through the weeks of operation with highly ionizing NRs.
- Analysis of recorded data underway.
- 50% of recorded data are blinded.
- YOLOv8 pipeline for online, real-time, analysis of CMOS data including Migdal search
- Work is ongoing to create a next generation NI-TPC to probe lower energy Migdal events
- Stay tuned for results !

Thank You!

Migdal for LDM searches

Nuclear recoil can't be detected

Bell et al, arXiv:2112.08514

Migdal In Galactic Dark mAtter expLoration

Expected Migdal backgrounds per 1 million DD-induced nuclear recoils with E > 100 keV

Component	Topology		D–D neutrons	
		>0.5	5–15 keV	
Recoil-induced δ -rays	Delta electron from NR track origin	≈0	0	
Particle-Induced X-ray Emission (PIXE)				
X-ray emission	Photoelectron near NR track origin	1.8	0	
Auger electrons	Auger electron from NR track origin	19.6	0	
Bremsstrahlung processes ^a				
Quasi-Free Electron Br. (QFEB)	Photoelectron near NR track origin	112	≈ 0	
Secondary Electron Br. (SEB)	Photoelectron near NR track origin	115	≈ 0	
Atomic Br. (AB)	Photoelectron near NR track origin	70	≈ 0	
Nuclear Br. (NB)	Photoelectron near NR track origin	≈ 0	≈ 0	
Neutron inelastic γ -rays	Compton electron near NR track origin	1.6	0.47	
Random track coincidences				
External γ - and X-rays	Photo-/Compton electron near NR track	≈ 0	≈ 0	
Trace radioisotopes (gas)	Electron from decay near NR track origin	0.2	0.01	
Neutron activation (gas)	Electron from decay near NR track origin	0	0	
Muon-induced δ -rays	Delta electron near NR track origin	≈ 0	≈ 0	
Secondary nuclear recoil fork	NR track fork near track origin	-	≈1	
Total background	Sum of the above components		1.5	
Migdal signal	Migdal electron from NR track origin		32.6	

Signal / background

Component	Topology	D-D neutrons		D-T neutrons	
Component	Topology		$515~\mathrm{keV}$	> 0.5	$515~\mathrm{keV}$
Recoil-induced δ -rays	Delta electron from NR track origin	≈ 0	0	$541,\!000$	0
Particle-Induced X-ray Emission (PIXE)					
X-ray emission	Photoelectron near NR track origin		0	365	0
Auger electrons	Auger electron from NR track origin		0	42,000	0
${ m Bremsstrahlung\ processes}^\dagger$					
Quasi-Free Electron Br. (QFEB)	Photoelectron near NR track origin	112	≈ 0	288	≈ 0
Secondary Electron Br. (SEB)	Photoelectron near NR track origin	115	≈ 0	279	≈ 0
Atomic Br. (AB)	Photoelectron near NR track origin	70	≈ 0	171	≈ 0
Nuclear Br. (NB)	Photoelectron near NR track origin		≈ 0	0.013	≈ 0
Photon interactions					
Neutron inelastic γ -rays (gas)	Compton electron near NR track origin	1.6	0.47	0.86	0.25
Random track coincidences	Photo-/Compton electron near NR track	≈ 0	≈ 0	≈ 0	≈ 0
Gas radioactivity					
Trace contaminants	Electron from decay near NR track origin	0.2	0.01	0.03	≈ 0
Neutron activation	Electron from decay near NR track origin	0	0	≈ 0	≈ 0
Secondary nuclear recoil fork	NR track fork near track origin	_	≈ 1	_	≈ 1
Total background	Sum of the above components		1.5		1.3
Migdal signal	Migdal electron from NR track origin		32.6		84.2

[†] These processes were (conservatively) evaluated at the endpoint of the nuclear recoil spectra. D Loomba (MIGDAL)

The Migdal effect has also been studied for neutrons on helium....an intriguing prediction:

Neutron-impact ionization of He

M S Pindzola¹, T G Lee¹, Sh A Abdel-Naby¹, F Robicheaux², J Colgan³ and M F Ciappina⁴

J. Phys. B: At. Mol. Opt. Phys. 47 (2014) 195202

We present energy and angle differential cross sections for the neutron-impact single ionization of He at 100 keV in figure 4. The TDCC results are for single ionization leaving He⁺ in the ground state, where the outgoing electron momentum k = 2.0 (E = 54.4 eV) and $\phi = 0$. We find that the electrons prefer to leave in the opposite direction to the target nucleus.

We will also be able to measure the angular distribution of the Migdal electron...

Figure 4. Neutron-impact single ionization of He at 100 keV. Solid line (red): TDCC method for the single ionization differential cross section with k = 2.0 and $\phi = 0$ (1.0 mbarn = 1.0×10^{-27} cm², kau = momentum in au, srad = solid angle in radians).

YOLO Capabilities

Application: Particle ID Application: Rare event searches (Migdal effect)

Applications: 1. Directional reconstruction 2. Energy reconstruction

Applications:

- 1. Vertex detection
- 2. Head/tail identification
 - 3. Trajectory fitting

Simulation vs. Data

We believe that reflections are the origin of the differences between sim vs data NR distributions.

Data and simulation agree much better for simulated ERs

Simulating NRs in our optical readout is very challenging. Instead we stitch simulated ERs on data NRs to form Migdal signals to train and test YOLO.

MIGDAL in nobles – Ar/CF4 mixtures

Light yield enhanced with addition of Ar.

L. Millins (MIGDAL), 16th Pisa Meeting on Advanced Detectors May 31 2024, Isola d'Elba

Charge and Light readout

ITO anode strips

Post-GEM ionisation

Readout of (x,z) plane

Pitch: 833 µm Digitised at 2 ns/sample (Drift velocity: 130 µm/ns)

D Loomba (MIGDAL)

qCMOS camera

(Hamamatsu ORCA - QUEST)

GEM scintillation through glass viewport behind ITO anode **Readout of (x,y) plane**

Exposure: 8.33 ms/frame (~120 Hz) (continuous) Pixel scale: 39 µm (2 × 2 binning) Lens: EHD-25085-C; 25mm f/0.85

VUV PMT (Hamamatsu R11410)

Detects primary (S1) and secondary (S2 from GEM) scintillation Absolute depth (z) coordinate Digitised at 2 ns/sample

→ Event Trigger

Gas System

Initial vacuum in the chamber ~1E-06 mbar

DAQ

Synchronisation with LED pulse Image cut due to a rolling shutter

End-to-end Simulations:

- DEGRAD (electron track)
- TRIM (NR cascade and electronic dE/dx)
- Magboltz (drift properties)
- Garfield++ (GEMs)
- Gmsh/Elmer & ANSYS (ITO and E-field)

Migdal event

150 keV F recoil

Anode strip readout

Induction/collection (electronics deconvolved)

Current [fC/ns]

Camera readout

Image analysis Deconvolution +

3D track reconstruction: Camera + ITO + PMT

3D track reconstruction: Camera + ITO + PMT

3D track reconstruction: 3D voxels

3D track reconstruction of low-energy electrons in the MIGDAL low pressure optical time projection chamber E. Tilly¹ and M. Handley^{2,3} on behalf of the MIGDAL collaboration Published 17 July 2023 • © 2023 IOP Publishing Ltd and Sissa Medialab Journal of Instrumentation, Volume 18, July 2023 Citation E. Tilly *et al* 2023 JINST 18 C07013 DOI 10.1088/1748-0221/18/07/C07013

3D track reconstruction

NI-OTPC Results

Results show promise for NID but will be challenging in O-TPC

Electron Tracks Measured Transverse Diffusion

150 Torr CF₄ + X torr CS₂				
CS, (Torr)	σ(μm)			
0	~400			
2.9	133.53			
4.2	126.10			
5.4	125.09			
45 Torr CF ₄ + X torr CS ₂				
0	~550			
4	~150-200			

Quantify diffusion (σ_L) and find optimal NI % using charge readout:

Results for σ_L in CF4/SF6 mixtures (60 cm drift):

R. Lafler, PhD Thesis, UNM, 2019

