Nuclear structure theory for CEν**NS**

Javier Menéndez

University of Barcelona Institute of Cosmos Sciences

Magnificent CEνNS 2024 workshop

Valencia, 12th June 2024

B. Guzmán

T. Miyagi

C. Brase, A. Schwenk

M. Hoferichter, F. Noel

UNIVERSITÄT BERN

Javier Menéndez (UB) [Nuclear structure theory for CE](#page-0-0)_VNS Valencia, 12 June '24 2/20

E

 299

 (0.12333338)

Nuclear matrix elements for new-physics searches

Neutrinos, dark matter studied in experiments using nuclei

Nuclear structure physics encoded in nuclear matrix elements key to plan, fully exploit experiments

$$
0\nu\beta\beta: \left(T_{1/2}^{0\nu\beta\beta}\right)^{-1} \propto g_A^4 \left|M^{0\nu\beta\beta}\right|^2 m_{\beta\beta}^2
$$

Dark matter:
$$
\frac{d\sigma_{\chi\mathcal{N}}}{dq^2} \propto \left|\sum_i c_i \zeta_i \mathcal{F}_i\right|^2
$$

CE_νNS:
$$
\frac{d\sigma_{\nu\mathcal{N}}}{dq^2} \propto \left|\sum_i c_i \zeta_i \mathcal{F}_i\right|^2
$$

*M*⁰νββ: Nuclear matrix element \mathcal{F}_i : Nuclear structure factor

Particle, hadronic and nuclear physics

 ν scattering off nuclei interplay of particle, hadronic and nuclear physics: ν 's: interaction with quarks and gluons Quarks and gluons: embedded in the nucleon Nucleons: form complex, many-nucleon nuclei

General ν-nucleus scattering cross-section:

$$
\frac{\mathrm{d}\sigma_{\nu\mathcal{N}}}{\mathrm{d}\boldsymbol{q}^2}\propto\Big|\sum_i\boldsymbol{c}_i\,\zeta_i\,\mathcal{F}_i\Big|^2
$$

 ζ : kinematics (q^2, \cdots)

c coefficients:

 ν couplings to quark, gluons (Wilson coefficients), particle physics convoluted with hadronic matrix elements, hadronic physics

 ${\cal F}$ functions: ${\cal F}^2 \sim$ structure factor, nuclear structure physics

Couple mostly to neutrons: $\sigma \propto \mathit{F}^{2}_{w} \propto \mathit{N}^{2}$ $\sigma \propto \mathit{F}^{2}_{w} \propto \mathit{N}^{2}$: not very [we](#page-2-0)[ll](#page-4-0) [k](#page-2-0)[no](#page-3-0)w[n i](#page-0-0)[n](#page-30-0) [nu](#page-0-0)[cle](#page-30-0)i

Neutral current ν scattering off nuclei

 ν -nucleus scattering detailed cross-section:

$$
\frac{\text{d}\sigma_A}{\text{d}\mathcal{T}} = \frac{G_F^2 m_A}{4\pi} \bigg(1 - \frac{m_A T}{2E_\nu^2} - \frac{T}{E_\nu}\bigg) Q_w^2 \big| F_w(\mathbf{q}^2) \big|^2 + \frac{G_F^2 m_A}{4\pi} \bigg(1 + \frac{m_A T}{2E_\nu^2} - \frac{T}{E_\nu}\bigg) F_A(\mathbf{q}^2)
$$

Dominated by the first term, proportional to the weak form factor:

$$
F_{w}(\mathbf{q}^{2}) = \frac{1}{Q_{w}} \bigg[\bigg(Q_{w}^{p} \Big(1 + \frac{\langle r_{E}^{2} \rangle^{p}}{6} t + \frac{1}{8m_{N}^{2}} t \Big) + Q_{w}^{n} \frac{\langle r_{E}^{2} \rangle^{n} + \langle r_{E,s}^{2} \rangle^{N}}{6} t \bigg) \mathcal{F}_{p}^{M}(\mathbf{q}^{2}) + \bigg(Q_{w}^{n} \Big(1 + \frac{\langle r_{E}^{2} \rangle^{p} + \langle r_{E,s}^{2} \rangle^{N}}{6} t + \frac{1}{8m_{N}^{2}} t \bigg) + Q_{w}^{p} \frac{\langle r_{E}^{2} \rangle^{n}}{6} t \bigg) \mathcal{F}_{n}^{M}(\mathbf{q}^{2}) - \frac{Q_{w}^{p} \big(1 + 2\kappa^{p} \big) + 2Q_{w}^{n} \big(\kappa^{n} + \kappa_{s}^{N} \big)}{4m_{N}^{2}} t \mathcal{F}_{p}^{\Phi''}(\mathbf{q}^{2}) - \frac{Q_{w}^{m} \big(1 + 2\kappa^{p} + 2\kappa_{s}^{N} \big) + 2Q_{w}^{p} \kappa^{n}}{4m_{N}^{2}} t \mathcal{F}_{n}^{\Phi''}(\mathbf{q}^{2}) \bigg], \qquad t = q^{2}
$$

which depends on the nuclear responses $\mathcal{F}_{p}^{M}, \mathcal{F}_{n}^{M}, \mathcal{F}_{n}^{\Phi''}, \mathcal{F}_{p}^{\Phi''}$

To a first approximation:

$$
R_{\rm w}\approx R_{\rm n}
$$

Nuclear structure factors

Nuclear matrix elements and nuclear structure factors needed in low-energy new-physics searches

$$
\langle \, \textsf{Final} \, | \mathcal{L}_{\textsf{leptons}-\textsf{nucleons}} | \, \textsf{Initial} \, \rangle = \langle \, \textsf{Final} \, | \, \int dx \, j^\mu(x) J_\mu(x) \, | \, \textsf{Initial} \, \rangle
$$

- **O** Nuclear structure calculation of the initial and final states: Shell model Energy-density functional Ab initio many-body theory QMC, Coupled-cluster, IMSRG...
- Lepton-nucleus interaction: Hadronic current in nucleus: phenomenological, effective theory of QCD

Shell-model spectra for heavy nuclei

Very good general agreement between the properties of low-energy nuclear states and nuclear shell-model calculations

However, some nuclei present challenging features such as ⁷³Ge ground and first-excited state, likely related to deformation

Klos, JM, Gazit, Schwenk, PRD 88, 083516 (2013)

Ab initio spectra for heavy nuclei

While VS-IMSRG calculations high quality in light nuclei (eg Na) challenges remain in heavier systems, such as $73Ge$

Interesting sensitivity to the chiral nuclear Hamiltonian used for ¹²⁷I

Hu et al. PRL 128, 072502 (2022)

 Ω

画

4 0 8

Ab initio predictions for neutron skin

Very notable progress ab initio calculations of (relatively uncorrelated) heavy nuclei reaching ²⁰⁸Pb

Determine ²⁰⁸Pb neutron skin using Bayesian approach based on sampling of 10⁹ (parameters of) nuclear Hamiltonians obtained with chiral EFT (rooted in QCD) Hu, Jiang, Miyagi et al.

Nature Phys. 18, 1196 (2022)

Javier Menéndez (UB) [Nuclear structure theory for CE](#page-0-0)_VNS Valencia, 12 June '24 9/20

Shell-model response functions for heavy nuclei

Coherent response functions correspond to M, Φ" operators Shell-model calculation as function of momentum transfer **q**

Hoferichter, JM, Schwenk, PRD102 074018 (2020)

$$
\mathcal{F}^M_{\pm} \longrightarrow 1
$$
coherent (charge)

$$
\mathcal{F}_{\pm}^{\Phi''} \longrightarrow \mathbf{S}_N \cdot (\mathbf{q} \times \mathbf{P}) \sim \mathbf{S}_N \cdot \mathbf{I}_N
$$

semi-coherent (spin-orbit, attractive *mean field* in nuclear potential)

 $CE\nu$ NS off argon

Nuclear structure factors for $CE\nu$ NS off 40Ar

Ab initio band from Hamiltonians built with no information about charge radii of nuclei

Other calculations include somehow this information in their Hamiltonian/parameters

Hoferichter, JM, Schwenk PRD102 074018 (2020)

Payne et al. PRC100 061304 (2019)

 0.20 Yang et al. PRC100 054301 (2019)

Abdel Khaleq et al. arXiv:2405.20060

Good agreement within uncertainties between calculations nuclear shell model, ab initio coupled cluster and relativistic mean field

Nuclear neutron radius from $CE\nu NS$

Use sensitivity to nuclear weak (nucleon) radius to determine the distribution of neutrons in nuclei

Difficult to obtain from nuclear reactions because of model dependence (reaction theory) in extracting results from experimental data

Coloma, Esteban, JM, Gonzalez-Garcia, JHEP 08, 030 (2020)

It may be difficult to tell apart neutron radii from different nuclear structure calculations with expected sensitivity of ESS meas[ur](#page-10-0)e[m](#page-12-0)[e](#page-10-0)[nt](#page-11-0)[s](#page-12-0)

Javier Menéndez (UB) [Nuclear structure theory for CE](#page-0-0)_VNS Valencia, 12 June '24 12/20

 QQ

Modified "weak" structure factor with new physics

 ν -nucleus scattering can probe new physics as well

With vector and axial currents different Wilson coefficients than Standard Model ones lead to a modified "weak" structure factor

$$
\frac{d\sigma_A}{dT}=\frac{m_A}{2\pi}\bigg(1-\frac{m_A T}{2E_\nu^2}-\frac{T}{E_\nu}\bigg)\tilde{Q}_w^2\big|\tilde{F}_w(\bm{q}^2)\big|^2+\frac{m_A}{2\pi}\bigg(1+\frac{m_A T}{2E_\nu^2}-\frac{T}{E_\nu}\bigg)\tilde{F}_A(\bm{q}^2),
$$

which depends on the same nuclear responses \mathcal{F}_{p}^{M} , \mathcal{F}_{n}^{M} , $\mathcal{F}_{n}^{\Phi''}$, $\mathcal{F}_{p}^{\Phi''}$ but that is distinguishable from the Standard Model one because of the different couplings

$$
\begin{aligned} \tilde{\mathcal{F}}_\text{W}(\textbf{q}^2) &= \frac{1}{\tilde{Q}_\text{W}}\bigg[\bigg(g_V^{\rho}+\dot{g}_V^{\rho}t+\frac{g_V^{\rho}+2g_{V,2}^{\rho}}{8m_N^2}t\bigg)\mathcal{F}_\text{P}^M(\textbf{q}^2) + \bigg(g_V^{\rho}+\dot{g}_V^{\rho}t+\frac{g_V^{\rho}+2g_{V,2}^{\rho}}{8m_N^2}t\bigg)\mathcal{F}_\text{P}^M(\textbf{q}^2) \\ &-\frac{g_V^{\rho}+2g_{V,2}^{\rho}}{4m_N^2}t\mathcal{F}_\text{P}^{\Phi^{\prime\prime}}(\textbf{q}^2)-\frac{g_V^{\rho}+2g_{V,2}^{\rho}}{4m_N^2}t\mathcal{F}_\text{P}^{\Phi^{\prime\prime}}(\textbf{q}^2)\bigg]. \end{aligned}
$$

Hoferichter, JM, Schwenk, PRD102 074018(2020)

 Ω

イロト イ押ト イヨト イヨトー

Modified "weak" structure factors

Different Standard Model and Beyond Standard Model structure factors

Relatively small difference for possibly large BSM parameters comparable to nuclear structure uncertainties between calculations unless close to the diffraction minimum

Other BSM couplings (eg tensor) lead to different responses similar to axial-axial SM ones

Javier Menéndez (UB) [Nuclear structure theory for CE](#page-0-0)_VNS Valencia, 12 June '24 14/20

 QQ

画像

Axial contribution to CEνNS

Precision studies such as BSM searches require correction to Standard-Model cross-section from non coherent axial-axial interaction

$$
\frac{\mathrm{d}\sigma_A}{\mathrm{d}\mathcal{T}} = \frac{G_F^2 m_A}{4\pi} \bigg(1 - \frac{m_A T}{2E_\nu^2} - \frac{T}{E_\nu}\bigg) Q_w^2 \big| F_w(\mathbf{q}^2) \big|^2 + \frac{G_F^2 m_A}{4\pi} \bigg(1 + \frac{m_A T}{2E_\nu^2} - \frac{T}{E_\nu}\bigg) F_A(\mathbf{q}^2)
$$

$$
F_A(\mathbf{q}^2) = \frac{8\pi}{2J+1} \times \left(\left(g_A^{s,N} \right)^2 S_{00}^{\mathcal{T}}(\mathbf{q}^2) - g_A g_A^{s,N} S_{01}^{\mathcal{T}}(\mathbf{q}^2) + \left(g_A \right)^2 S_{11}^{\mathcal{T}}(\mathbf{q}^2) \right)
$$

$$
F_A(0) = \frac{4}{3} g_A^2 \frac{J+1}{J} (\langle \mathbf{S}_\rho \rangle - \langle \mathbf{S}_n \rangle)^2,
$$

which is transverse and (dominated by) isovector response proportional to expectation value of spin of protons/neutrons in the nucleus No direct proble of spin distribution of nucleons in nuclei

Vanishes for even-even systems

 Ω

イロト イ押ト イヨト イヨト

Chiral EFT: low energy approach to QCD, nuclear structure energies Approximate chiral symmetry: pion exchanges, contact interactions Systematic expansion: nuclear forces and electroweak currents

Weinberg, van Kolck, Kaplan, Savage, Wise, Meißner, Epelbaum...

Short-range couplings fitted to experiment once

 \Box \rightarrow \rightarrow \Box \rightarrow \rightarrow \rightarrow \Box

Axial 1b and 2b currents

Axial one-body currents complemented with two-body currents

Approximate in medium-mass nuclei: normal-ordering wrt Fermi gas

Normal-ordered two-body currents modify structure factor

$$
S_{11} = S_{11}^{\mathcal{T}} + S_{11}^{\mathcal{L}} = \sum_{L} \left[[1 + \delta'(\mathbf{q}^2)] \mathcal{F}_{-}^{\Sigma_L'}(\mathbf{q}^2) \right]^2 + \sum_{L} \left[[1 + \delta''(\mathbf{q}^2)] \mathcal{F}_{-}^{\Sigma_L'}(\mathbf{q}^2) \right]^2
$$

$$
\delta'(\delta a), \qquad \delta''(\delta a, \delta a^P)
$$

Axial 1b and 2b currents

Axial one-body currents complemented with two-body currents

Approximate in medium-mass nuclei: normal-ordering wrt Fermi gas

Normal-ordered two-body currents modify structure factor

$$
S_{11} = S_{11}^{\mathcal{T}} + S_{11}^{\mathcal{L}} = \sum_{L} \left[[1 + \delta'(\mathbf{q}^2)] \mathcal{F}_{-}^{\Sigma_L'}(\mathbf{q}^2) \right]^2 + \sum_{L} \left[[1 + \delta''(\mathbf{q}^2)] \mathcal{F}_{-}^{\Sigma_L''}(\mathbf{q}^2) \right]^2
$$

$$
\delta'(\delta a), \qquad \delta''(\delta a, \delta a^P)
$$

Similar (non-coherent) vector two-body current[s!](#page-16-0)

Miyagi, Brase, Schwenk, JM, in progress メロメメ 御きメモ メモ きっころ **Javier Menéndez** (UB) [Nuclear structure theory for CE](#page-0-0)_VNS Valencia, 12 June '24 17/20

 299

 β decay "quenching"

Which are main effects missing in conventional β-decay calculations? Test case: GT decay of ¹⁰⁰Sn

Relatively similar and complementary impact of

- **o** nuclear correlations
- meson-exchange currents

Gysbers et al. Nature Phys. 15 428 (2019)

4. 何

 \sim ∋⇒

Axial-axial neutrino scattering off nuclei

Recent ab initio calculation using VS-IMSRG (valence-space in-medium similarity renormalization group method)

Consistent with nuclear shell model results still show larger uncertainties, interesting discrepancy in ¹²⁷l

Javier Menéndez (UB) [Nuclear structure theory for CE](#page-0-0)_VNS Valencia, 12 June '24 19/20

 QQ

 $CE\nu$ NS cross-section depends on nuclear structure factors than need to be calculated with nuclear structure theory

Ab initio and more phenonomelogical approaches good agreement for dominant coherent structure factor: sensitivity to radius of neutrons in nuclei

BSM searches in general sensitive to different structure factors due to different Wilson coefficients

Precision studies need to take into account axial-axial cross-section as well: 1b+2b currents

Thank you very much!

4 0 8

×. A Þ

 299

Axial-axial neutrino scattering off nuclei

Calculation of nuclear structure factors for axial-axial elastic ν scattering off CsI, Ar, F, Na, Ge, Xe:

Hoferichter, JM, Schwenk, PRD102 074018(2020)

Uncertainty bands from uncertainty in chiral EFT couplings needed to describe shell-model quenching

Javier Menéndez (UB) [Nuclear structure theory for CE](#page-0-0)_VNS Valencia, 12 June '24 20/20

 QQ

Nuclear shell model

Shell model diagonalization: \sim 10¹⁰ Slater dets. Caurier et al. RMP77 (2005) $\geq 10^{24}$ Slater dets. with Monte Carlo SM Otsuka, Shimizu, Y.Tsunoda Phys. Scr. 92 063001 (2017)

Nuclear shell model configuration space only keep essential degrees of freedom

- High-energy orbitals: always empty
- Valence space: where many-body problem is solved
- Inert core: always filled

$$
\left\langle H \left| \Psi \right\rangle \right\rangle = E \left| \Psi \right\rangle \rightarrow H_{\text{eff}} \left| \Psi \right\rangle_{\text{eff}} = E \left| \Psi \right\rangle_{\text{eff}}
$$
\n
$$
\left| \Psi \right\rangle_{\text{eff}} = \sum_{\alpha} c_{\alpha} \left| \phi_{\alpha} \right\rangle, \quad \left| \phi_{\alpha} \right\rangle = a_{i1}^+ a_{i2}^+ ... a_{iA}^+ \left| 0 \right\rangle
$$

Heff includes effects of

イロト イ押ト イヨト イヨ

- inert core
- o high-energy orbitals

β–decay Gamow-Teller transitions: "quenching"

β decays (*e* [−] capture): phenomenology vs ab initio

Martinez-Pinedo et al. PRC53 2602(1996)

$$
\langle F | \sum_{i} [g_A \sigma_i \tau_i^-]^{eff} | I \rangle, \ \ [\sigma_i \tau]^{eff} \approx 0.7 \sigma_i \tau
$$
\nStandard shell model
\nneeds $\sigma_i \tau$ "quenching"

Gysbers et al. Nature Phys. 15 428 (2019)

Ab initio calculations including meson-exchange currents and additional nuclear correlations do not need any "quenching"

 $-10⁻¹$

 \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{A} $\overline{\mathcal{B}}$

 298

Oxygen dripline using chiral NN+3N forces correctly reproduced ab-initio calculations treating explicitly all nucleons excellent agreement between different approaches

No-core shell model (Importance-truncated)

In-medium SRG Hergert et al. PRL110 242501(2013)

Self-consistent Green's function Cipollone et al. PRL111 062501(2013)

Coupled-clusters

Jansen et al. PRL113 142502(2014)

16 18 20 22 24 26 28 -180 -170 -160 -150 -140 -130 Energy (MeV) MR-IM-SRG IT-NCSM SCGF Lattice EFT CC obtained in large many-body spaces AME 2012

 $-10⁻¹$

Mass Number A

Recent application to ²⁰⁸Pb

Hu, Jiang, Miyagi et al. Nature Phys. 18, 1196 (2022)

Nuclear weak radius

 ν -nucleus scattering thus sensitive to weak radii of nuclei similar to *e*-nucleus scattering sensitive to charge radii:

$$
\begin{aligned} &R_{\textrm{w}}^2=\frac{ZQ_{\textrm{w}}^p}{Q_{\textrm{w}}}\bigg(R_p^2+\langle r_{\textrm{E}}^2\rangle^p+\frac{Q_{\textrm{w}}^n}{Q_{\textrm{w}}^p}\big(\langle r_{\textrm{E}}^2\rangle^n+\langle r_{\textrm{E},\textrm{s}}^2\rangle^N\big)\bigg)\\ &+\frac{NQ_{\textrm{w}}^n}{Q_{\textrm{w}}}\bigg(R_n^2+\langle r_{\textrm{E}}^2\rangle^p+\langle r_{\textrm{E},\textrm{s}}^2\rangle^N+\frac{Q_{\textrm{w}}^p}{Q_{\textrm{w}}^n}\langle r_{\textrm{E}}^2\rangle^n\bigg)+\frac{3}{4m_N^2}+\langle \tilde{r}^2\rangle_{\textrm{SO}}, \end{aligned}
$$

$$
\begin{aligned} \langle \tilde{r}^2 \rangle_{\text{SO}} &= -\frac{3\Omega_{\text{W}}^p}{2m_N^2 \Omega_{\text{W}}} \Big(1 + 2\kappa^p + 2\frac{Q_{\text{W}}^n}{Q_{\text{W}}^p}(\kappa^n + \kappa_s^N)\Big) \mathcal{F}_{p}^{\Phi''}(0) \\ &- \frac{3Q_{\text{W}}^n}{2m_N^2 \Omega_{\text{W}}} \Big(1 + 2\kappa^p + 2\kappa_s^N + 2\frac{Q_{\text{W}}^p}{Q_{\text{W}}^n} \kappa^n\Big) \mathcal{F}_{p}^{\Phi''}(0). \end{aligned}
$$

To a first approximaction

$$
R_{\rm w}\approx R_n,
$$

Nuclear weak radius also probed in pariry-violating electron scattering usually measured at a single kinenamical point (**q** ² [va](#page-25-0)[lu](#page-27-0)[e](#page-25-0)[\)](#page-26-0)

Javier Menéndez (UB) [Nuclear structure theory for CE](#page-0-0)_VNS Valencia, 12 June '24 20/20

 QQ

Elastic neutrino scattering off nuclei

Calculation of nuclear structure factors for coherent elastic ν scattering off CsI, Ar, F, Na, Ge, Xe

Hoferichter, JM, Schwenk, PRD102 074018(2020)

These are similar to structure factors for beyond Standard Model interactions Also similar to dark matter-nucleus (WIMP-nucleus) structure factors relativistic ν 's instead of nonrelativistic WIMPs Ω

Javier Menéndez (UB) [Nuclear structure theory for CE](#page-0-0)_VNS Valencia, 12 June '24 20/20

In $0\nu\beta\beta$ decay, two weak currents lead to four-body operator when including the product of two 2b currents: computational challenge

Approximate 2b current as effective 1b current normal ordering with respect to a Fermi gas JM, Gazit, Schwenk, PRL107 062501(2011)

Normal-odering approximation works remarkably well for β decay ($q = 0$) Gysbers et al. Nature Phys. 15 428 (2019)

Some reduction of quenching due to 2b currents at $p \sim m_{\pi}$ relevant for $0\nu\beta\beta$ decay Hoferichter, JM, Schwenk PRD102 074018 (2020)

Jokiniemi, Romeo, Soriano, JM, PRC 107 044305 (2023)

イロト イ押ト イヨト イヨ

 QQ

Effective shell-model interactions

Coupled Cluster:

Solve coupled-cluster equations for

core (reference state $|\Phi\rangle$), $A + 1$ and $A + 2$ systems

Project the coupled-cluster solution into valence space (Okubo-Lee-Suzuki transformation)

Jansen et al. Phys. Rev. Lett. 113, 142502 (2014)

In-medium similarity renormalization group

decouple core from excitations decouple *A* particles in valence space from rest

Stroberg et al.

Annu. Rev. Nucl. Part. Sci. 69, 307 (2019)

In addition to *Heff* , these non-perturbative methods provide the core energy

Low-energy states nuclear properties

Very good general agreement

between the properties of low-energy nuclear states

Charge radii, quadrupole and magnetic moments electric quadrupole and magnetic dipole transitions

