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CEνNS ν signal

COHERENT: CsI data:2018

COHERENT (2017) No CEvNS rejected at 6.7σ: CsI
(2020): 11.6σ

COHERENT (2020)         No CEνNS rejected at 3.8σ : LAr

𝜋𝜋+ → 𝜇𝜇+ + 𝜈𝜈𝜇𝜇Prompt:                     

Delayed:                     𝜇𝜇+ → 𝑒𝑒+ + 𝜈𝜈𝜇𝜇 + 𝜈𝜈𝑒𝑒

COHERENT, 
CCM, JSNS2

• Proton-beam:

• Reactor: CONUS. CONNIE,  MINER…  
• The high-intensity proton beam and gamma flux provide a great opportunity
      to search for new physics at CEνNS, e.g., light DM, ALP etc. COHERENT, CCM



𝐴𝐴′: Vector
φ=scalar 
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New physics at CEνNS
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 A’, a, φ :  Nuclear deexcitations
                (nucleon coupling via
                  q,g)
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New physics at CEνNS
 Charged meson decay: quarks and lepton couplings

 Neutral meson decays

• Not helicity suppressed  both electron 
and muon final states contribute 

• Needs to include all the internal 
bremsstrahlung diagrams IBi  (i=1,23)

𝜋𝜋+
𝜐𝜐𝑙𝑙

𝑙𝑙+

a,φ
𝑨𝑨′

, 𝐾𝐾+

𝜋𝜋0 → 𝛾𝛾𝐴𝐴𝐴𝜇𝜇𝜂𝜂0,

PHYSICS REPORTS No. 3 (1962) 151-21)5.
Bandyopadhyay, Ghosh, Roy, PRD 105 (2022) 11, 115039.

• Satisfy the experimental constraint from 
     PIENU (pions) and NA62(Kaons)

 There can be more  production processes, e.g., 𝜈𝜈 + 𝑁𝑁 → 𝜈𝜈𝑠𝑠+N  
      (coherently enhanced) using �νsσμνFμνν 

 Neutrons can be used (from reactor and beam-based)
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CEνNS:   Dark Sector Signal
CEνNS signal at the detector: O(10) KeV and less nuclear recoil

Similar nuclear recoil for dark matter  coherent nucleus scattering

 In this talk: O(MeV) e, γ 

𝛾𝛾,

N N
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Bethe-Heitler pair production

Inelastic nucleus Scattering

Inverse -Primakoff

Inverse -Compton

N* N γ

MeV

Absorption  also produces 
similar signal 
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New Physics via Inelastic processes
 Light dark matter at CEνNS experiment

 ALP at reactor 

 ATOMKI anomaly at CEνNS experiment

 Results for light DM at large neutrino facilities

All these examples will involve O(MeV) line signals

Light DM at CEνNS via elastic channels:

ALP at reactor: Production  via line, Primakoff, Compton and detection 
inverse Primakoff/Compton and decay: 
Dent, Dutta, Kim,  Liao, Mahapatra, Sinha, Thompson, PRL, 2020;
D. Aristizabal Sierra, V. De Romeri, L. Flores, D. Papoulias, JHEP, 2021[ TEXONO, PRD 2007

Deniverville, Pospelov, Ritz, PRD, 2015;
Dutta, Kim, Liao, Park, Shin, Strigari, PRL, 2020;
COHERENT, PRD 2019, PRD 2021; CCM, PRD 2022
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DM (χ) can be scalar/fermion

𝑨𝑨′

χ

𝜒̅𝜒

We use Bigstick: Shell Model code for this calculation

1. MeV Signal – Light DM

B. Dutta, W. Huang, 
J. Newstead, V. Pandey, 
PRD 2022

N* N γ

MeV

• This calculation estimates the cross-section measured
    for coherent scattering with KeV nuclear recoil
• Also provides a line signal estimate for the MeV range
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MeV Signal - DM

• GT: dominates the cross-section 

For ν-DM 
scattering 
with Eν=30 MeV

• Cross-section can be calculated: 
     Using shell model code, e.g., BIGSTICKand
     Experimental measurements
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MeV Signal - DM
We use BIGSTICK: SDPF-NR interaction for Ar

• Inelastic to elastic Cross-section ratio ~ 10-1-10-3

• The signal is now in the Mev Region (not KeV),
     neutrino background is easy to overcome

• The signal is a line signal

• Impact of threshold is different

For elastic scattering:



10

MeV signal-Light DM

• The cross-section for the line signal is smaller compared to 
the  elastic signal

• The background is small

•  threshold requirement is ~ 0.5-10 MeV

 Better sensitivity of the parameter space

• For Carbon, we use the measurement (KARMEN) of the 15.1 MeV line
      (in the neutral current data), 
• We use the BIGSTICK calculations
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MeV signal-Light DM

KARMEN:  CCM 120

The background will be reduced 
by 1/100 in CCM200 for the same POT
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MeV signal – DM: COHERENT & CCM

𝑔𝑔𝐷𝐷= 2𝜋𝜋, 𝑀𝑀𝐴𝐴𝐴
𝑀𝑀𝜒𝜒

= 3

B. Dutta, W. Huang, J. Newstead, PRL 2023

• We use CCM 120 background measurements and projections for CCM 200 (for MeV region)

• A lower threshold detector will help to improve the sensitivity in the elastic channel

• t < 200 ns, prompt window reduces the neutrino background down to  O(1) events

• Rescale the shell model prediction to be consistent with the experiment, W. Tornow et al., 
2210.14316 
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MeV signal – Light DM: COEHERNT & CCM

• Karmen seems to be providing the best limit with the observation
     Is the neutron background correctly estimated?
• CCM 200 is measuring the MeV scale electromagnetic signal
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2. Axion Absorption
• Axions/ALPs interaction with the nucleon: 

• ALPs can be produced from the deexcitation

ℒ ⊃ 𝜕𝜕𝜇𝜇𝑎𝑎
𝑓𝑓𝑎𝑎

�𝑁𝑁𝛾𝛾𝜇𝜇𝛾𝛾5𝑁𝑁,    𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎 = 1
𝑓𝑓𝑎𝑎

ALPs can be absorbed at the detector and produce line signals: 

TEXONO, 
Phys.Rev.D 75 (2007) 052004

a+N N*

• We can probe 𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎 :    Target and detector excitation;
                            𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎 𝑔𝑔𝑎𝑎𝛾𝛾𝛾𝛾: Primakoff production (detection) 
                                               and deexcitation detection (production); 
 𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎 𝑔𝑔𝑎𝑎𝑒𝑒𝑒𝑒: Compton production (detection) and 
                                                 deexcitation detection (production)
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2. Axion Absorption

B. Dutta, W. Huang, J. Newstead,  To appear

• The production is via pn/Li and the detection  uses the deexcitation photons at CsI (left)

• The production is via Primakoff, deexcitation and the detection is via decay, dexcitation 
     and inverse Primakoff (right)
• The parameter space constraints are from: Lella et al, 2306.01048

CsI detector: 1, 10ton, 1 MW reactor, detector is 1 m away from the core
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3. ATOMKI Anomaly
• Neutrons in these experiments can be used ATOMKI anomaly (>5 σ) with 

Be8
                                  p+A N*→ N+ e+e-  

 
• Excess also has been observed with He4 and C12

Excess can be explained by X-boson prompt decays

 Neutron flux at CCM/JSNS2 detectors to produce
 X boson at the detector which decays promptly
• CCM flux is at the detector using  experimental 
results and MCNP
• JSNS2

α is fit to the data at the detector=387/beam spill
                                       
• CCM: neutrons excite the Oxygen of PMT glass

• JSNS2:  neutrons excite Carbon, Oxygen of PMT glass
σn ~ 10-2-3 Barn 
Using GSM-CC
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3. ATOMKI Anomaly

B. Dutta, B. Hu,  W. Huang, R. Van de Water,  To appear

X particle flux from deexcitaion:

Parameter space to explain ATOMKI 
anomaly,   Hostert, Pospelov, PRD, 2023
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Light DM at  Large ν detectors
Various ways of probing Sub-GeV DM:

                     Cosmic ray scattered
Bringmann, Pospelov, 2018

Ema, Sala, Sato, 2018

Dent, Dutta, Newstead, Shoemaker, 2019

Low mass DM (up to 10 GeV) 
becomes energetic detection becomes easier  

• Since light DM comes to the detector with 
      higher energy, threshold does not matter
 Large scale neutrino detectors can be used

• We can use this boosted DM and inelastic
      nuclear scattering
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Direct Detection at  Large ν detectors

Deexcitation photons: Background events for various detectors
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Large ν detectors : Light DM

• Solid lines denote the inelastic channel, while dashed lines are elastic channels. 
• We use the hadronic interactions.

𝑀𝑀𝐴𝐴𝐴
𝑀𝑀𝜒𝜒

= 3

Beam-dump-based DM limit

B. Dutta, W. Huang,  D. Kim J. Newstead, 
J. Park, I. Shaukat Ali, 2402.04184
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Outlook
•  Beyond the SM physics can be probed at CEνNS

• New physics ideas can be probed efficiently at the inelastic nuclear 
scattering using deexcitation line signals

• Some regions of light DM parameter space show better sensitivity 
utilizing inelastic channel

• ALPs can be probed with gann couplings using absorption-based 
deexcitation.

• ATOMKI anomaly can be probed using the neutrons at the beam-
dump based CEνNS experiments.

• Inelastic nuclear searches can provide a very good ability to probe 
light DM in large-scale neutrino detectors. 
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