CEvNS: Inelastic Exploration

Bhaskar Dutta

Texas A&M University

Talk at Magnificent CEvNS, Valencia, Spain

12th June 2024

CEvNS v signal

- Reactor: CONUS. CONNIE, MINER...
- The high-intensity proton beam and gamma flux provide a great opportunity to search for new physics at CEvNS, e.g., light DM, ALP etc. **COHERENT, CCM**

New physics at CEvNS

For example,

 \succ From γ :

Primakoff

Proton beam based

A', a, ϕ : Nuclear deexcitations (nucleon coupling via q,g)

New physics at CEvNS

PHYSICS REPORTS No. 3 (1962) 151-21)5. Bandyopadhyay, Ghosh, Roy, PRD 105 (2022) 11, 115039.

Charged meson decay: quarks and lepton couplings

- Not helicity suppressed → both electron and muon final states contribute
- Needs to include all the internal bremsstrahlung diagrams IB_i (i=1,23)
 - Satisfy the experimental constraint from **PIENU** (pions) and **NA62**(Kaons)

$$\eta^0, \pi^0 \to \gamma A'_{\mu}$$
 > Neutral meson decays

➤ There can be more production processes, e.g., ν + N → ν_s+N (coherently enhanced) using ν̄_sσ_{µν}F^{µν}ν

Neutrons can be used (from reactor and beam-based)

CEvNS: Dark Sector Signal

v, DM

recoil

nucleus

CEvNS signal at the detector: O(10) KeV and less nuclear recoil v, DM

Similar nuclear recoil for dark matter coherent nucleus scattering

New Physics via Inelastic processes

□ Light dark matter at CEvNS experiment

□ ALP at reactor

□ ATOMKI anomaly at CEvNS experiment

□ Results for light DM at large neutrino facilities

All these examples will involve O(MeV) line signals

Light DM at CE vNS via elastic channels: Deniverville, Pospelov, Ritz, PRD, 2015; Outta, Kim, Liao, Park, Shin, Strigari, PRL, 2020; COHERENT, PRD 2019, PRD 2021; CCM, PRD 2022

ALP at reactor: Production via line, Primakoff, Compton and detection inverse Primakoff/Compton and decay: Dent, Dutta, Kim, Liao, Mahapatra, Sinha, Thompson, PRL, 2020; D. Aristizabal Sierra, V. De Romeri, L. Flores, D. Papoulias, JHEP, 2021/TEXONO, PRD 2007

1. MeV Signal – Light DM

DM (χ) can be scalar/fermion

We use Bigstick: Shell Model code for this calculation

- This calculation estimates the cross-section measured for coherent scattering with KeV nuclear recoil
- Also provides a line signal estimate for the MeV range

B. Dutta, W. Huang, J. Newstead, V. Pandey, PRD 2022

MeV Signal - DM

$$\frac{d\sigma_{\text{inel}}^{DM}}{dE_{r}} = \frac{2e^{2}\epsilon^{2}g_{D}^{2}E'_{\chi}^{2}}{p_{\chi}p'_{\chi}(2m_{N}E_{r} + m_{A'}^{2})^{2}} \frac{m_{N}}{2\pi} \frac{4\pi}{2J+1} \left\{ \sum_{J \ge 1, spin} \left[\frac{1}{2} (\vec{l} \cdot \vec{l}^{*} - l_{3}l_{3}^{*}) \left(|\langle J_{f}||\hat{\mathcal{T}}_{J}^{mag}||J_{i}\rangle|^{2} + |\langle J_{f}||\hat{\mathcal{T}}_{J}^{el}||J_{i}\rangle|^{2} \right) \right] \right\}$$

$$+ \sum_{J \ge 0, spin} \left[l_{0}l_{0}^{*} |\langle J_{f}||\hat{\mathcal{M}}_{J}||J_{i}\rangle|^{2} + l_{3}l_{3}^{*} |\langle J_{f}||\hat{\mathcal{L}}_{J}||J_{i}\rangle|^{2} - 2l_{3}l_{0}^{*}Re\left(\langle J_{f}||\hat{\mathcal{L}}_{J}||J_{i}\rangle\langle J_{f}||\hat{\mathcal{M}}_{J}||J_{i}\rangle^{*} \right) \right] \right\}$$

$$\frac{d\sigma_{DM}^{GT}}{dE_{r}} = \frac{2e^{2}\epsilon^{2}g_{D}^{2}E'_{\chi}^{2}}{p_{\chi}p'_{\chi}(2m_{N}E_{r} + m_{A'}^{2})^{2}} \frac{m_{N}}{2\pi} \frac{4\pi}{2J+1} \times \left[\frac{(\vec{l} \cdot \vec{l}^{*} - l_{3}l_{3}^{*})}{(\vec{l} \cdot J_{I}||\hat{J}_{i}\rangle|^{2}} + l_{3}l_{3}^{*} |\langle J_{f}||\hat{\mathcal{T}}_{J}^{el}||J_{i}\rangle|^{2}} \right] \right]$$

$$= \frac{2e^{2}\epsilon^{2}g_{D}^{2}E'_{\chi}^{2}}{p_{\chi}p'_{\chi}(2m_{N}E_{r} + m_{A'}^{2})^{2}} \frac{m_{N}}{2\pi} \frac{4\pi}{2J+1}}{(\vec{l} - \vec{l} - \frac{1}{2})} \frac{\sigma_{0}}{\sigma_{0}} \frac{\sigma_{0}}}{\sigma_{$$

• Cross-section can be calculated: Using shell model code, e.g., BIGSTICKand Experimental measurements

MeV Signal - DM

We use BIGSTICK: SDPF-NR interaction for Ar

For elastic scattering:

$$\frac{d\sigma_{\rm el}^{DM}}{dE_r} = \frac{e^2 \epsilon^2 g_D^2 Z^2}{4\pi (E_\chi^2 - m_\chi^2) (2m_N E_r + m_{A'}^2)^2} F^2(q^2) \\ \times \left[2E_\chi^2 m_N \left(1 - \frac{E_r}{E_\chi} - \frac{m_N E_r}{2E_\chi^2} \right) + E_r^2 m_N \right]$$

- The signal is now in the Mev Region (not KeV), neutrino background is easy to overcome
- The signal is a line signal
- Impact of threshold is different

Scattering	Experiment	Elastic	Inelastic	Ratio
<i>ν</i> - ⁴⁰ Ar	COHERENT	2.27×10^{2}	3.15	7.21×10
$\nu - 40 \text{ Ar}$	CCM	1.91×10^{4}	2.65×10^{2}	7.21×10
$\nu - {}^{133}Cs$	COHERENT	1.16×10^{3}	1.52×10^{-2}	7.65×10^{3}
$\nu - \frac{127}{1}$ I	COHERENT	$1.06 imes 10^3$	3.75×10^{-1}	2.81×10^{3}
χ- ⁴⁰ Ar	COHERENT	1.18	1.13×10^{-1}	1.04×10
χ- ⁴⁰ Ar	CCM	9.92×10	9.52	1.04×10
χ- ¹³³ Cs	COHERENT	4.11	4.91×10^{-3}	8.38×10^{2}
$\chi^{-127}I$	COHERENT	3.87	1.16×10^{-2}	3.33×10^{2}

MeV signal-Light DM

- The cross-section for the line signal is smaller compared to the elastic signal
- The background is small
- threshold requirement is $\sim 0.5-10 \text{ MeV}$
- → Better sensitivity of the parameter space

	1		1		× ×	1	1	/	
Experiment	E_{beam}	POT	Target	Detector:					
	[GeV]	$[yr^{-1}]$		material	mass	distance	angle	runtime	E_r^{th}
KARMEN	0.8	1.16×10^{22}	Ta	CH ₂	56 t	17.7 m	100°	4 years	10 MeV
COHERENT [†]	1	6.0×10^{23}	Hg	NaI[T1]	3.5 t	22 m	120°	3 year	∼few keV
CCM^{\dagger}	0.8	7.5×10^{21}	W	Ar	7 t	20 m	90°	3 years	25 keV
PIP2-BD [†]	2	$9.9 imes10^{22}$	С	Ar	100 t	15 m	N/A	5 years	20 keV

- For Carbon, we use the measurement (KARMEN) of the 15.1 MeV line (in the neutral current data),
- We use the BIGSTICK calculations

MeV signal-Light DM

¹²C($\nu_{\mu}\nu_{\mu}'$)¹²C *(1⁺,1;15.1 MeV)

The background will be reduced by 1/100 in CCM200 for the same POT

MeV signal – DM: COHERENT & CCM

- We use CCM 120 background measurements and projections for CCM 200 (for MeV region)
- t < 200 ns, prompt window reduces the neutrino background down to O(1) events
- Rescale the shell model prediction to be consistent with the experiment, W. Tornow et al., 2210.14316
- A lower threshold detector will help to improve the sensitivity in the elastic channel

B. Dutta, W. Huang, J. Newstead, PRL 2023

MeV signal – Light DM: COEHERNT & CCM

- Karmen seems to be providing the best limit with the observation Is the neutron background correctly estimated?
- CCM 200 is measuring the MeV scale electromagnetic signal

2. Axion Absorption

• Axions/ALPs interaction with the nucleon:

$$\mathcal{L} \supset \frac{\partial_{\mu}a}{f_a} \overline{N} \gamma^{\mu} \gamma^5 N, \quad g_{ann} = \frac{1}{f_a}$$

• ALPs can be produced from the deexcitation

Channel	E_{γ}	Transitions	Φ_γ	
	(keV)		$(fission^{-1})$	(GCi)
$p(n,\gamma)d$	2230	Isovector M1	0.25	0.61
$^{10}\mathrm{B}(\mathrm{n,}lpha)^{7}\mathrm{Li}^{*}$	478	M1 $\left(\frac{1}{2}^{-}\right) \rightarrow \left(\frac{3}{2}^{-}\right)$	0.28	0.68
01		A		

TEXONO, Phys.Rev.D 75 (2007) 052004

ALPs can be absorbed at the detector and produce line signals:

$$\sigma_{\rm abs}(E_a, \Delta_2) = \frac{g_A^2 \pi}{6(2J+1)} g_{ann}^2 \delta(E_a - E_r - \Delta_2) p_a |\langle J_f || \sum_{i=1}^A \frac{1}{2} \hat{\sigma}_i \hat{\tau}_0 || J_i \rangle|^2 \qquad a + N \rightarrow N^*$$

• We can probe g_{ann} : Target and detector excitation; $g_{ann} g_{a\gamma\gamma}$: Primakoff production (detection) and deexcitation detection (production); $g_{ann} g_{aee}$: Compton production (detection) and deexcitation detection (production)

2. Axion Absorption

CsI detector: 1, 10ton, 1 MW reactor, detector is 1 m away from the core

- The production is via pn/Li and the detection uses the deexcitation photons at CsI (left)
- The production is via Primakoff, deexcitation and the detection is via decay, dexcitation and inverse Primakoff (right)
- The parameter space constraints are from: Lella et al, 2306.01048

B. Dutta, W. Huang, J. Newstead, To appear

3. ATOMKI Anomaly

• Neutrons in these experiments can be used ATOMKI anomaly (>5 σ) with Be8

 $p+A \rightarrow N^* \rightarrow N^+ e^+e^-$

• Excess also has been observed with He4 and C12

Excess can be explained by X-boson prompt decays

- Neutron flux at CCM/JSNS² detectors to produce X boson at the detector which decays promptly
- CCM flux is at the detector using experimental results and MCNP
- JSNS² $\phi_n(E_n) = \frac{\alpha}{30} \exp(-E_n/30 \text{MeV})$
- α is fit to the data at the detector=387/beam spill
- CCM: neutrons excite the Oxygen of PMT glass
- JSNS2: neutrons excite Carbon, Oxygen of PMT glass

 $\sigma_n \sim 10^{-2-3} Barn$ Using GSM-CC

3. ATOMKI Anomaly

$$\mathcal{L} = \epsilon_p \bar{p} \gamma^\mu \gamma^5 p X_\mu + \epsilon_n \bar{n} \gamma^\mu \gamma^5 n X_\mu$$

Parameter space to explain ATOMKI anomaly, Hostert, Pospelov, PRD, 2023

B. Dutta, B. Hu, W. Huang, R. Van de Water, To appear

Light DM at Large v detectors

Various ways of probing Sub-GeV DM:

Bringmann, Pospelov, 2018

Ema, Sala, Sato, 2018

Dent, Dutta, Newstead, Shoemaker, 2019

Low mass DM (up to 10 GeV) becomes energetic \rightarrow detection becomes easier

- Since light DM comes to the detector with higher energy, threshold does not matter
- → Large scale neutrino detectors can be used
- We can use this boosted DM and inelastic nuclear scattering

Direct Detection at Large v detectors

Deexcitation photons: Background events for various detectors

Large v detectors : Light DM

- Solid lines denote the inelastic channel, while dashed lines are elastic channels. •
- We use the hadronic interactions. •

B. Dutta, W. Huang, D. Kim J. Newstead, J. Park, I. Shaukat Ali, 2402.04184

Outlook

- Beyond the SM physics can be probed at CEvNS
- New physics ideas can be probed efficiently at the inelastic nuclear scattering using deexcitation line signals
- Some regions of light DM parameter space show better sensitivity utilizing inelastic channel
- ALPs can be probed with g_{ann} couplings using absorption-based deexcitation.
- ATOMKI anomaly can be probed using the neutrons at the beamdump based CEvNS experiments.
- Inelastic nuclear searches can provide a very good ability to probe light DM in large-scale neutrino detectors.