Nuclear Recoil Imaging in Argon Magnificent CE_VNS 2024 - Valencia, Spain

David Caratelli¹, Angela Fava², Jacob Zettlemoyer², Alexander Antonakis¹ - June 14th 2024

¹ UC Santa Barbara ² Fermilab

NR Directionality for Neutrinos

Directional detection of Nuclear Recoil signature in CEvNS:

- neutrino spectroscopy

Oscillations (e.g. from Daya Bay [PRL115.111802])

DUNE supernova physics [EPJC 81 (2021) 5, 423]

 $E_r = \frac{2m_N E_v^2 \cos^2 \theta_r}{(E_v + m_N)^2 - E_v^2 \cos^2 \theta_r}$

"Coherent elastic neutrino-nucleus scattering with directional detectors" PRD 102 (2020) 1, 015009 M. Abdullah, D. Aristizabal Sierra, B. Dutta, L. Strigari

Liquid Argon Time Projection Chambers

kiloton scale detectors (10³ meters)

Noble element: efficient charge / photon transport across meter-scale volumes

O(mm) tracking resolution with sub-MeV thresholds for energy deposits

Cathode Plane

excellent for GeV neutrino physics program!

Tracking in Argon-based TPCs

Energy (Reco)= 10.85 MeV

GeV

keV-scale imaging in argon-based detectors

tens of e- for NR signature

O(10s um) NR range in GAr

Nuclear Recoil Tracking in GAr Simulations and feasibility

 $\frac{2m_N E_v^2 \cos^2 \theta_r}{(E_v + m_N)^2 - E_v^2 \cos^2 \theta_r}$ E_r

"Coherent elastic neutrino-nucleus scattering with directional detectors" <u>PRD 102 (2020) 1, 015009</u> M. Abdullah, D. Aristizabal Sierra, B. Dutta, L. Strigari

Nuclear Recoil Tracking in GAr Simulations and feasibility

 $Y \; [mm]$

Nuclear Recoil Tracking in GAr Simulations and feasibility

LArCADe: "tip" geometries

R&D effort launched by Angela Fava (FNAL) with LDRD

(1) Tip geometry provides potential for amplification in bulk fields of O(100s V/cm)

LAr amplification

(2) Tip "arrays" may enable NR tracking in gas medium

GAr NR tracking

LArCADe: R&D setup

cathode @ voltage

LArCADe: R&D runs at Fermilab

LArCADe R&D program at Fermilab

Utilize Fermilab's "PAB" (now "Noble Liquid Test Facility") for cryogenic setup with purified LAr

"Purity monitor": single-pixel TPC for charge transparency / attenuation measurements 11

Work with different tip geometries / arrays

Collaborating with materials experts @ Padova, FNAL, BNL

LArCADe: data-taking and analysis

Anode

0.85 cm 0.85 cm 0.85 cm 0.85 cm

1.7 cm

LArCADe: data-taking in GAr

LArCADe: progress and R&D next-steps

Several runs at Fermilab 2018-2020

Successful operation in gas.

Continuing effort to obtain charge amplification in LAr at few kV operations

Launched new effort towards understanding ideal geometries for charge amplification

Tip-array nano fabrication

Tip-array geometries:

- can help achieve charge amplification
- Scalable technology
- May be leveraged for tracking capabilities

Tip-array geometries for NR tracking in GAr a possible new direction for R&D.

GEM-based designs also an attractive option

LArCADe: tip-array simulation

E-Field Near $r = 1 \ \mu m$ Tip

LArCADe: tip-array simulation

optimize tip geometry and provide input for quantitative gain assessment: $O(100) \mu m$ height, O(10s) nm tip radius.

LArCADe: tip-array fabrication

Launched development of tip-arrays @ BNL's Center for Functional Nanomaterials (CFN)

User facility with resources for design, etching, sputtering, imaging

LArCADe: tip-array nano fabrication

LArCADe: tip-array nano fabrication

Tip-array geometries:

- can help achieve charge amplification
- Scalable technology
- R&D towards micron-scale tracking

Tip-array geometries for NR tracking in GAr a possible new direction for R&D.

5.0kV 9.4mm x50 SE(M) 4/22/2024 18:52

Tip geometry optimization

Oxford etching machine @ BNL

Bombard substrate with different gas mixtures at different temperatures to "eat" away silicon

Tip "etching" key to tip geometry. Scale of structures being built large compared to standard uses for this equipment. Active R&D

TRANSLATE TRANSport in Liquid Argon of near-Thermal Electrons

TRANSLATE -- A Monte Carlo Simulation of Electron Transport in Liquid Argon

Zach Beever, David Caratelli, Angela Fava, Francesco Pietropaolo, Francesca Stocker, Jacob Zettlemoyer

TRANSLATE: Monte Carlo simulation

τ = K / 2n

K > $\sigma_{\rm tot}$

10³

TRANSLATE: Monte Carlo simulation

TRANSLATE: simulation output

TRANSLATE: simulation output

TRANSLATE: simulation validation

Track O($10^2 - 10^3$) electrons over time intervals of $10^{-9} - 10^{-6}$ seconds.

Track as a function of E-field:

- 1. Average distance traveled \rightarrow drift velocity [GAr & LAr]
- 2. Spread in electron clouds \rightarrow diffusion [GAr & LAr]
- 3. Amplification [GAr]

field: 5000 V/cm

TRANSLATE: ion diffusion

1000 drift coordinate [μ m]

50 ns

TRANSLATE: charge amplification

d

CEvNS NR Tracking @ Accelerator \nu Sources

Several locations offer a sizable flux of 10s of MeV neutrinos for CE ν NS detection. Work ongoing to study different options for the purpose of NR tracking.

Summary

- Nuclear Recoil imaging can expand applications for CEvNS
- Strong synergy and complementarity with existing neutrino program
 - Oscillations, astrophysics, BSM searches all benefit from E_v measurements!
- LArCADe: active R&D on tip-array charge amplification and GAr NR tracking

