David Caratelli1 , Angela Fava2 , Jacob Zettlemoyer2 , Alexander Antonakis1 - June 14th 2024

¹ UC Santa Barbara ² Fermilab

Nuclear Recoil Imaging in Argon Magnificent CE*ν***NS 2024 - Valencia, Spain**

NR Directionality for Neutrinos

Directional detection of Nuclear Recoil signature in CEvNS:

- neutrino spectroscopy

Oscillations (e.g. from Daya Bay [PRL115.111802]) DUNE supernova physics [EPJC 81 (2021) 5, 423] Cairan O'Hare

 $E_r = \frac{2m_N E_v^2 \cos^2 \theta_r}{(E_v + m_N)^2 - E_v^2 \cos^2 \theta_r}$

"Coherent elastic neutrino-nucleus scattering with directional detectors" [PRD 102 \(2020\) 1, 015009](https://inspirehep.net/literature/1788152) M. Abdullah, D. Aristizabal Sierra, B. Dutta, L. Strigari

Liquid Argon Time Projection Chambers

kiloton scale detectors (103 meters)

Noble element: efficient charge / photon transport across meter-scale volumes

O(mm) tracking resolution with sub-MeV

Cathode Plane

thresholds for energy deposits **EXEC 10 FIND SET Algens** excellent for GeV neutrino physics program!

Tracking in Argon-based TPCs

keV-scale imaging in argon-based detectors

tens of e- for NR signature

O(10s um) NR range in GAr

Nuclear Recoil Tracking in GAr Simulations and feasibility

 $\frac{2m_N E_v^2 \cos^2{\theta_r}}{(E_v + m_N)^2 - E_v^2 \cos^2{\theta_r}}$ E_r

"Coherent elastic neutrino-nucleus scattering with directional detectors" [PRD 102 \(2020\) 1, 015009](https://inspirehep.net/literature/1788152) M. Abdullah, D. Aristizabal Sierra, B. Dutta, L. Strigari

Nuclear Recoil Tracking in GAr Simulations and feasibility

 \boldsymbol{Y} [mm]

Nuclear Recoil Tracking in GAr Simulations and feasibility

LArCADe: "tip" geometries

R&D effort launched by Angela Fava (FNAL) with LDRD

(1) Tip geometry provides potential for amplification in bulk fields of O(100s V/cm)

LAr amplification

(2) Tip "arrays" may enable NR tracking in gas medium

GAr NR tracking

LArCADe: R&D setup

cathode @ voltage

LArCADe: R&D runs at Fermilab

LArCADe R&D program at Fermilab

Utilize Fermilab's "PAB" (now "Noble Liquid Test Facility") for cryogenic setup with purified LAr

"Purity monitor": single-pixel TPC for charge transparency / attenuation measurements 11

Work with different tip geometries / arrays

Collaborating with materials experts @ Padova, FNAL, BNL

LArCADe: data-taking and analysis

Anode

0.85 cm 0.85 cm 0.85 cm 0.85 cm 1.7 cm

LArCADe: data-taking in GAr

LArCADe: progress and R&D next-steps

Several runs at Fermilab 2018-2020

Successful operation in gas.

Continuing effort to obtain charge amplification in LAr at few kV operations

Launched new effort towards understanding ideal geometries for charge amplification

Tip-array nano fabrication

Tip-array geometries:

- can help achieve charge amplification
- Scalable technology
- May be leveraged for tracking capabilities

Tip-array geometries for NR tracking in GAr a possible new direction for R&D.

GEM-based designs also an attractive option

LArCADe: tip-array simulation

E-Field Near $r = 1 \mu m$ Tip

LArCADe: tip-array simulation

optimize tip geometry and provide input for quantitative gain assessment: O(100) µm height, O(10s) nm tip radius.

LArCADe: tip-array fabrication

sputtering, imaging

LArCADe: tip-array nano fabrication

LArCADe: tip-array nano fabrication

Tip-array geometries:

- can help achieve charge amplification
- Scalable technology
- R&D towards micron-scale tracking

Tip-array geometries for NR tracking in GAr a possible new direction for R&D.

5.0kV 9.4mm x50 SE(M) 4/22/2024 18:52

Tip geometry optimization

Tip "etching" key to tip geometry. Scale of structures being built large compared to standard uses for this equipment. Active R&D

-
-

Oxford etching machine @ BNL

Bombard substrate with different gas mixtures at different temperatures to "eat" away silicon

TRANSLATE TRANSport in Liquid Argon of near-Thermal Electrons

TRANSLATE -- A Monte Carlo Simulation of Electron Transport in Liquid Argon

Zach Beever, David Caratelli, Angela Fava, Francesco Pietropaolo, Francesca Stocker, Jacob Zettlemoyer

TRANSLATE: Monte Carlo simulation

 τ = K / 2n

 $10³$

TRANSLATE: Monte Carlo simulation

TRANSLATE: simulation output

TRANSLATE: simulation output

TRANSLATE: simulation validation

Track $O(10^2 - 10^3)$ electrons over time intervals of $10^{-9} - 10^{-6}$ seconds.

field: 5000 V/cm

Track as a function of E-field:

- 1. Average distance traveled \rightarrow drift velocity [GAr & LAr]
- 2. Spread in electron clouds \rightarrow diffusion [GAr & LAr]
- 3. Amplification [GAr]

TRANSLATE: ion diffusion

1500

2000

1000 drift coordinate $[\mu m]$

TRANSLATE: charge amplification

d

CEvNS NR Tracking @ Accelerator *ν* **Sources**

 ϵ everal locations oner a sizable flux of tos of iviev fieuthnos for GED ive detection Work ongoing to study different options for the purpose of NR tracking. Several locations offer a sizable flux of 10s of MeV neutrinos for CE_VNS detection.

Summary

- Nuclear Recoil imaging can expand applications for CEvNS
- Strong synergy and complementarity with existing neutrino program
	- Oscillations, astrophysics, BSM searches all benefit from E_v measurements!
- LArCADe: active R&D on tip-array charge amplification and GAr NR tracking

