

Scattering and Neutrino Detector at the LHC

Collaboration: 150 members 24 Institutes in 14 Countries and CERN

> Giovanni De Lellis on behalf of the SND@LHC Collaboration LHCC Open Session, November 29th 2023

The SND@LHC experiment

SND@LHC REFRESHER

Physics motivation

- Study neutrino interactions of all flavours at unexplored energy range
- Probe heavy flavour production with neutrinos at unexplored rapidity
- Relevant for FCC detectors and vsfrom astrophysical sources
- LFU with neutrino interactions
- Search for recoil signatures of FIPs

Experiment concept

5x SciFi

planes

Hybrid detector optimised for the identification of all three neutrino flavours **VETO PLANE**:

tag penetrating muons

NEUTRINO TARGET & VERTEX DETECTOR:

- Emulsion cloud chambers (60 emulsion films, each 300μ m thick, interleaved by 1mm thick tungsten plates)

E.M. CAL

- 250μ m Scintillating fibres for timing information and e.m. energy measurement

HADRONIC CALO:

3x Downstream

planes

5x Upstream

planes

Detector view in 2022 and in 2023

March 2023

5

Activities in 2023

EMULSION TARGET #4 and #5

- Mass of target #4: 797 kg
- **1158** films (70% Nagoya+30% Slavich)
- Assembly: March 16th-19th
- Installation: March 20th
- Extraction: June 23rd
- Emulsion development: July 4th-17°
- Time for underground operation: 4 hours

- Mass of target #5: 784 kg
- **1140** films (100% Nagoya)
- Assembly: March 16th-19th
- Installation: June 23rd
- Extraction: July 27th
- Emulsion development: August 12th-25th
- Time for underground operation: 4 hours

Target assembly

Target installation

Strengthening the scanning station power

Upgrade of the veto system during next YETS

Recover fiducial volume, both longitudinally and in the transverse plane Add a third layer to avoid loosing the first target wall and lower their position to cover the full transverse plane

Excavated pit

Towards energy calibration

Preliminary calibration studies and energy resolution

10

QDC US [a.u.]

GeV

Data analysis

12

Integrated luminosity

Integrated luminosity: 70.5 fb⁻¹ Recorded efficiency 97.3% (2022 95%, 2023 99.7%)

Neutrino observation with electronic detectors

- Analysis strategy:
 - Full Run 3 2022 dataset: recorded luminosity of 36.8 fb⁻¹
 - Observe ν_{μ} Charged Current interactions with electronic detectors only
 - Maximise S/B, counting-based approach: initial S/N ~ 10^{-8} down to 100
 - $\sim ~~~ \sim 10^9$ muon events: strong rejection power to reach negligible background level
- Signal selection:
 - Fiducial Volume (1, 2) cuts
 - Neutral vertex, located in the 3rd or 4th target wall
 - Select fiducial cross-sectional area to reject background entering from the side
 - Neutrino ID cuts
 - Require "large" E.M. (SciFi) and hadronic activity (HCAL)
 - Event produced upstream (timing)
 - Muon reconstructed and isolated in the Muon system

13

Background evaluation

• Muon induced background: undetected muons entering the target (2022 Run3 data)

Observation of collider muon neutrinos with 2022 data

15

Muon neutrino selection with 2022-2023 data in an extended volume (wall 2 and 5 included)

16

Electron neutrino studies

- Signal selection based on topological and calorimetric information
- Discriminating variable: density of hits in SciFi

- Density of his > 15000
 - negligible neutral hadron background
- Density of hits > 25000
 - dominated by v_e CC events

This study will profit from the ongoing energy calibration

With a cut at 15000: 1.61 NC $0.29 \nu_{\mu} CC$ $7.1 \nu_{e} CC$

Muon flux measurement and emulsion analysis

10⁵ tracks/cm² in 10 fb⁻¹ exposure

SND@LHC measure muon flux in 3 different detector systems (emulsion, SciFi and Muon System).
Flux seen to increase with vertical distance from LOS.
FLUKA simulation estimate of flux ~20-25% lower than measurement.

The muon flux per integrated luminosity through an 18×18 cm² area in the emulsions is 1.5 ± 0.1 (stat) $\times 10^4$ fb/cm². The measured muon flux per integrated luminosity through a 31×31 cm² central SciFi area is

 2.06 ± 0.01 (stat) ± 0.12 (sys) $\times 10^4$ fb/cm²,

while for the downstream muon system the flux is

 $2.35 \pm 0.01 ({
m stat}) \pm 0.10 ({
m sys}) imes 10^4 ~{
m fb/cm}^2$

for a 52×52 cm² central detector region.

400

450

Trident process in the neutrino target

• $\mu^{\pm} + N \rightarrow \mu^{+}\mu^{-}\mu^{\pm} + N$

- Studied in the 60's and 70's, <u>Muon Tridents</u>, J.D. Bjorken(SLAC), M.C. Chen, <u>Observation of Muon Trident Production in Lead and the Statistics of the Muon</u>
- Due to identical muons, sensitive to Fermi statistics
- With 10 GeV muon beam, measured 60 nb per lead nucleon
- "Background": bremsstrahlung followed by γ -conversion $\mu^{\pm} + N \rightarrow \mu^{\pm} + N + \gamma, \gamma + N \rightarrow N + \mu^{+}\mu^{-}$
- Process introduced in GEANT4 in 2022
- In 2022 data, 137 events observed with 3 tracks and 1 vertex
- Expect from simulation 85 events (2/3 due to γ -conversion and 1/3 genuine trident)

(c) q AND P* SPACELIKE

550

600 z [cm]

Trident events induced in the upstream rock

ND@LHC Experiment, CERN

tun / Event: 4964 / 983826 ime (GMT): 2022-10-01 12:06:56

550

z [cm]

AdvSND-Far in TI18

- Improve statistics, reduce systematics
- Separate ν from ν -bar
- Charm production measurements
- ► LFU

Adding a magnet for ν/ν bar separation and improved energy resolution

22

Off-axis configuration

Flavour	CC neutrino interactions Yield	NC neutrino interactions Yield
$egin{array}{c} u_\mu \ ar u_\mu \ u_e \ ar u_e \ u_ arrow u_ $	$6.9 imes 10^4$ $2.5 imes 10^4$ $2.1 imes 10^4$ $1.0 imes 10^4$ 950 580	$\begin{array}{c c} 2.0 \times 10^{4} \\ 9.0 \times 10^{3} \\ 6.5 \times 10^{3} \\ 4.0 \times 10^{3} \\ 300 \\ 240 \end{array}$
TOT	$1.3 imes 10^5$	4.1×10^4

Active surface: $\sim 50 \times 50 \text{ cm}^2$ Tungsten mass $\sim 2 \text{ tons}$

Lowered by ~15 cm

Partial overlap with FASER useful for data comparison/systematics Gain in statistics \times 4 w.r.t. current location for equal luminosity > 150k ν interactions

Vertex detector: agreement with CMS Tracker
to re-use their TOB silicon trips (122 μ m pitch)Ongoing studies on optimal configuration and e/π^0 separation performance

A few concluding remarks

- Observation of collider muon neutrinos published on PRL in July 19th
- Muon flux measurement being published on EPJC
- Smooth operation with record efficiency of 99.7% in 2023
- Improvements on the energy measurement/calibration: successful test beam in August, preliminary calibration studies
- Improvements on the veto identification system during next YETS to recover fiducial volume losses (bottom part in particular)
- Strengthening emulsion scanning power at CERN (also to cope for Russian difficulties)
- Extend the physics case during HL-LHC