

Tracking requirements for physics

Fred Blanc (EPFL)

LHCb Upgrade II Tracking WorkshopEvian-Les-Bains6 March 2024

Process towards a detector design

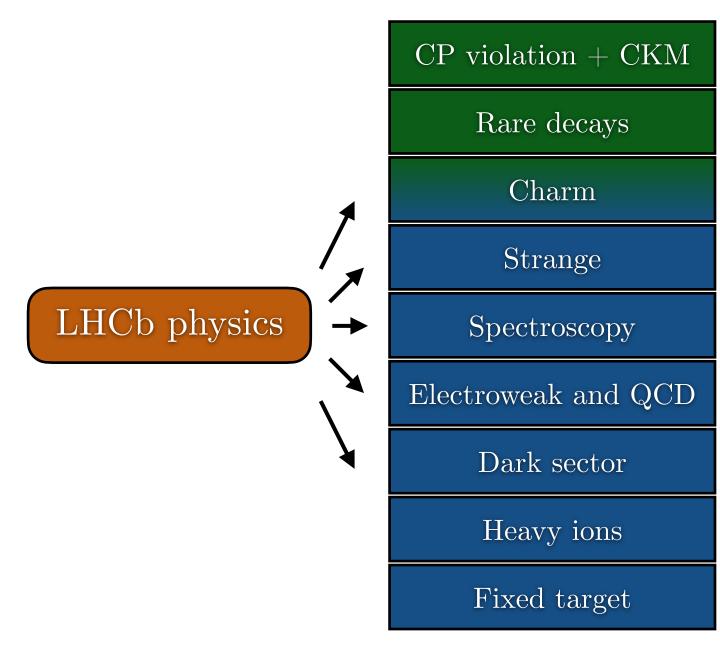
PS: technological solutions to meet the physics requirements must be optimised in light of other inputs such as: cost, construction/installation time

Upgrade II environment for physics

- High luminosity
 - Instantaneous luminosity (levelled): $\mathcal{L}_{inst} = (1.0 1.5) \times 10^{34} \,\mathrm{cm}^{-2} \mathrm{s}^{-1}$
 - Pileup (levelled): 28 42

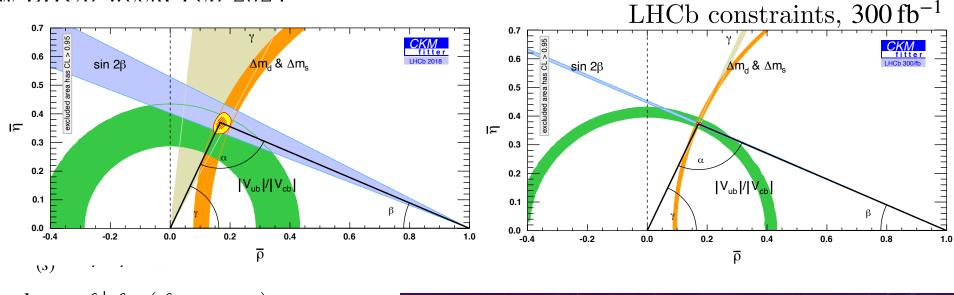
Matteo Palutan, U2 introduction LHCb week, Feb 2024

- The high pileup is the main modification to the reconstruction and analysis environment
 - allows for high statistics (



- at the cost of increased occupancy, ambiguities, ghosts

 \Rightarrow design the detector to be performant under these extreme conditions


- Fixed target physics
 - installation of a polarised gas target for fixed target physics?
 - SMOG system should have little impact on the tracker requirements (to be confirmed...)

LHCb Upgrade II physics programme

<u>CP violation and rare decays</u>

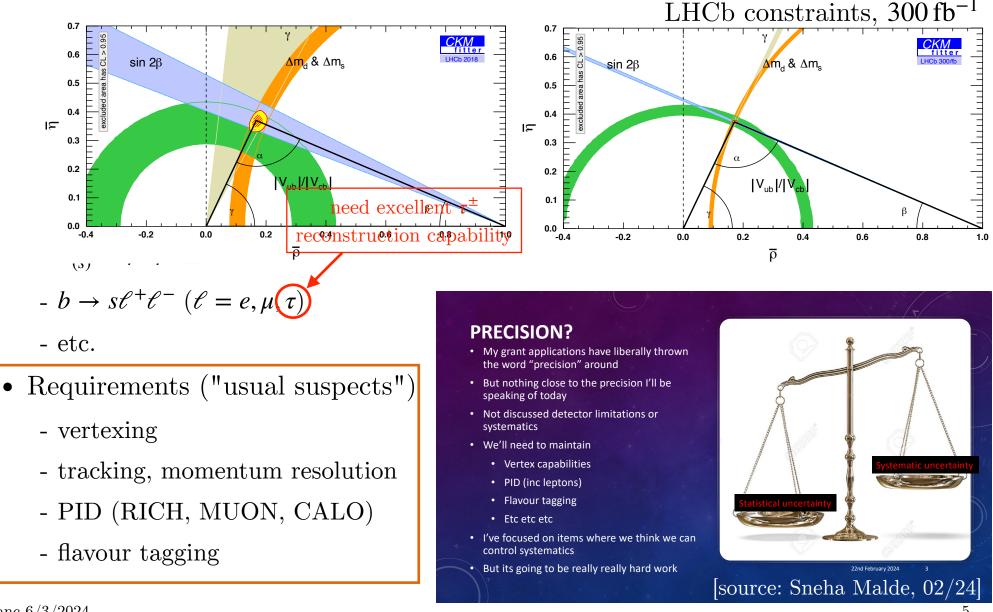
• cf. talk by <u>Sneha Malde</u>, "LHCb Upgrade 2 uniqueness in flavour physics" at LHCb week. Feb 2024

$$-b \to s\ell^+\ell^- \ (\ell = e, \mu, \tau)$$

- etc.

- Requirements ("usual suspects")
 - vertexing
 - tracking, momentum resolution
 - PID (RICH, MUON, CALO)
 - flavour tagging

PRECISION?


- My grant applications have liberally thrown the word "precision" around
- But nothing close to the precision I'll be speaking of today
- Not discussed detector limitations or systematics
- We'll need to maintain
 - Vertex capabilities
 - PID (inc leptons)
 - Flavour tagging
 - Etc etc etc
- I've focused on items where we think we can control systematics
- But its going to be really really hard work

F. Blanc 6/3/2024

<u>CP violation and rare decays</u>

• cf. talk by <u>Sneha Malde</u>, "LHCb Upgrade 2 uniqueness in flavour physics" at LHCb week. Feb 2024

Tools: PID and Flavour tagging

• PID

- tracking and ghost rejection are essential input to:
 - the RICH performance (track direction)
 - identifying neutrals in the calorimeter
- Flavour tagging
 - cf. talk by <u>Claire Prouve</u>, "Update on flavour tagging", at LHCb week, Feb 2024

Upgrade 2 studies

Sara Celani, Veronika Chobanova, Quentin Fuehring, Stephanie Hansmann-Menzemer, Christoph Langenbruch, Peilian Li, Diego Martinez-Santos, Micol Olocco, Claire Prouve, Lennart Uecker

Studies to determine the performance of the flavour tagging for different Upgrade 2 conditions.

Use Run 3 MC and reweight/smear different variables \rightarrow retrain the flavour tagging classifiers and determine tagging power.

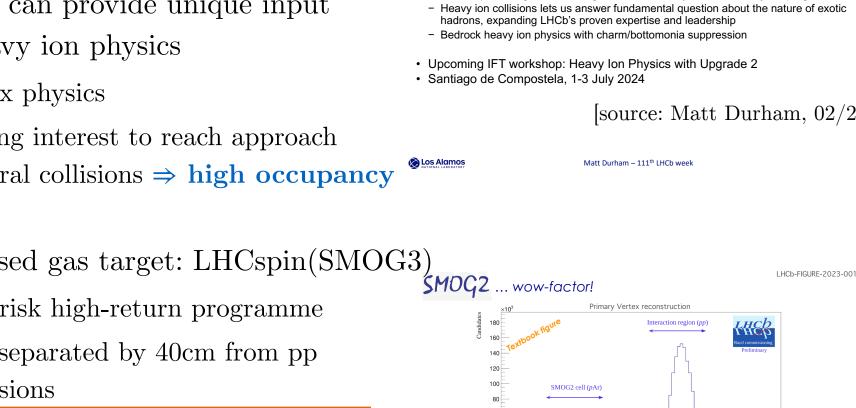
- pileup
- PID efficiencies
- IP resolution
- (in)correct PV association efficiency
- ghostrate

⇐ parameters directly impacting flavour tagging performance (timing will be of help too)

Spectroscopy

• cf. talk by <u>Mengzhen Wang</u>, "LHCb Upgrade 2 uniqueness in hadron spectroscopy", at LHCb week, Feb 2024 10.5 64 new hadrons at LHCb 7.5-T....(6900 7.0 • Search for new hadrons 6.5 ≡_b(6095)⁰ ≡_b(6087)⁰ Λ_b(5920)⁶ E₆(5955) 6.0 B₁(5840)+-1 B_s*(6114)⁰ E((5935) Σ. (6097) 8.*(6063) • Measure hadron properties X(4685) P.N(4457) X(4500 bā P^∧_{ψS}(4338)⁰
 P^N_v(4440) P^N_v(4312) X(4274 T_{as1}(4220) cc(aā) $T_{as1}^{\theta}(4000)$ $T^{\theta}_{\psi s1}(4000)$ ccãã ψ₃(3842) X(3960) T...(3875) cēcē 3.5 Q-(3327) сā Ω₂(3185) D,*(3000)* cäqč D_1(2860) Ec(2939) 3.0 Di(3000)% $T^a_{CS0}(2900)^+$ $T^a_{CS0}(2900)^0$ baa 0.12760 = (2923 \rightarrow exotic states (tetra- penta-quarks) 0.12740 D...(2590 n.(258) cēaaa 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 \rightarrow double-heavy baryons ($\tau \sim 0.1 \, \text{ps}$) Date of arXiv submission patrick koppenburg@cern ch 2023-08-16 . . . 2500 Candidates / (10 MeV/ c^2) - Data LHCb 107 $9 \, {\rm fb}^{-1}$ – Fit 2000 ····· Signal • VELO performance is essential to: 2021Background 1500 - reduce the background level 12 1000 JHEP $\Xi_{cc}^+ \to \Lambda_c^+ K^- \pi^+$ - measure short lifetimes 500 3500 3700 3800 3600 3400 $m \left(\Lambda_c^+ K^- \pi^+ \right) \left[\text{MeV}/c^2 \right]$

Heavy ions and fixed target


- cf. talk by <u>Matt Durham</u>, "LHCb Upgrade 2 uniqueness in IFT physics", at LHCb week, Feb 2024 Summary
- LHCb can provide unique input to heavy ion physics
 - low-x physics
 - strong interest to reach approach central collisions \Rightarrow high occupancy
- Polarised gas target: LHCspin(SMOG3)
 - low-risk high-return programme
 - PV separated by 40cm from pp collisions

 \Rightarrow vertexing important, but timing probably not essential

[source: Matt Durham, 02/24]

Upgrade 2 provides us with an opportunity to do truly unique heavy ion physics:

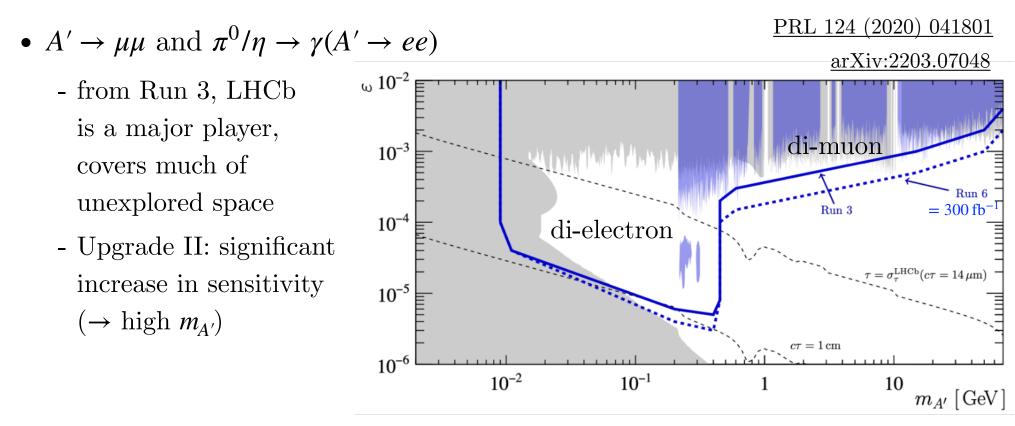
- Gluon dynamics at low-x will always be interesting, field rapidly evolving - Our unique strengths measuring b hadrons directly enhance heavy ion program

Two well separated and independent Interaction Points working simultaneously

113 Ge

13.8 TeV

200


z [mm]

60

40

Input from Andrii Usachov

Dark sector

- Similarly, unique sensitivity in other Dark Sector scenarios:
 - dark scalar,
 - axion-like particles,
 - heavy neutral leptons,
 - dark hadrons

Input from Andrii Usachov

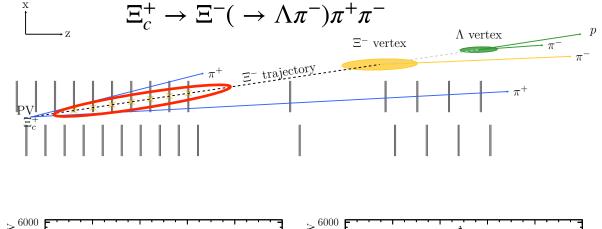
Dark sector (II)

UNREALISED NEW PHYSICS SEARCHES

Rept.Prog.Phys. 85 (2022) 2, 024201

Unleashing the full power of LHCb to probe Stealth New Physics

Editors: M. Borsato¹, X. Cid Vidal², Y. Tsai^{3,4}, C. Vázquez Sierra⁵, J. Zurita⁶


Authors: G. Alonso-Álvarez⁷, A. Boyarsky⁸, A. Brea Rodríguez²,
D. Buarque Franzosi^{10,11}, G. Cacciapaglia^{12,13}, A. Casais Vidal², M. Du¹⁴, G. Elor¹⁵,
M. Escudero¹⁶, G. Ferretti¹⁰, T. Flacke¹⁷, P. Foldenauer¹⁸, J. Hajer^{19,20}, L. Henry⁵,
P. Ilten²¹, J. Kamenik^{22,23}, B. Kishor Jashal⁶, S. Knapen⁵, F. L. Redi²⁴, M. Low²⁵,
Z. Liu^{14,26,27}, A. Oyanguren Campos⁶, E. Polycarpo²⁸, M. Ramos^{29,30},
M. Ramos Pernas³¹, E. Salvioni⁵, M. S. Rangel²⁸, R. Schäfer⁹, L. Sestini³², Y. Soreq³³,
V. Q. Tran¹⁴, I. Timiryasov²⁴, M. van Veghel³⁴, S. Westhoff⁹, M. Williams³⁵, J. Zupan²¹


- Useful guide on exotic signatures with a sound theoretical motivation
- Significant and increasing attention to LHCb in the theory community over the last few years
- Well-aligned with the trend on dedicated **long-lived particle searches**

New sensitivity due to e.g. downstream tracking at HLT1

Medium- and Long-lived particle

- $K_{\rm S}^0 \to \pi^+ \pi^-$ and $\Lambda \to p\pi$: essential inputs to much of the LHCb physics programme
- Long-lived particles, e.g. Heavy Neutral Leptons
 - \Rightarrow need large tracker acceptance volume
 - \Rightarrow downstream tracking and standalone T-tracking
 - \Rightarrow what level of momentum resolution if T stations in fringe field?
- Hyperon decays
 - charged hyperons decaying in the VELO
 - track hyperons in the VELO
 - significant improvement of the signal selection

LHCb collaboration

LHCb-DP-2023-004

The tracker requirements for physics

• The rule of thumb:

"Same or better" detector performance as in Upgrade I

- Key tracking parameters
 - momentum resolution
 - vertexing (primary and secondary decays)
 - beauty, charm, τ^{\pm} lepton, flavour tagging
 - but also for spectroscopy, fixed target, medium-to-long lived particles
 - ghost rejection
 - \Rightarrow high segmentation (pixels where needed)
 - \Rightarrow keeping (very) low material budget

\rightarrow Quantification of the requirement must come from simulation

Other points to consider

- Improved efficiency at low momentum
 - slow pions in D^\ast decays
 - multi-body channels
 - access to central heavy-ion collisions

 \Rightarrow magnet stations (can we gain from UT in fringe magnetic field?)

- Vertexing for decays at or near threshold $A \to B + C ~(m_B + m_C \approx m_A)$
 - e.g. $f_0 \to \pi^+\pi^-,\,\phi \to K^+K^-,\,\gamma \to e^+e^-$ conversion
 - Need excellent vertex resolution to improve the vertex resolution in direction of the boost
- Pseudo-rapidity acceptance:
 - well defined in the VELO + UT (straight tracks)
 - not same definition in terms of physics reach in T stations (after magnet)

 \rightarrow talk by Mary Richardson-Slipper in this session

θ

Conclusion

• VELO

- vertex resolution is essential for all LHCb physics
- VELO tracks fully part of Long tracks
- VELO tracks now used for medium-to-long lived particles

\Rightarrow no compromise on VELO tracking and vertexing capabilities

- Tracking (UT, MT, Magnet)
 - high tracking efficiency, in particular for high-multiplicity processes
 - low ghost level
 - excellent momentum resolution \Rightarrow mass resolution, background rejection

\Rightarrow high granularity, low material budget tracker

• Detector optimisation:

- to be based on simulation of key physics channels \rightarrow talk by Matteo Palutan in this session
- a global optimisation is essential to maximise the physics output