LHCb η acceptance in Upgrade II

Mary Richardson-Slipper Upgrade II Tracking Workshop 6th – 7th March 2024

Reducing acceptance in high- η

- Why would we?
 - High- η tracks have largest occupancy and is the most challenging part for tracking
 - Tracks at low angle traversing a large amount of material (high ghost rate)
 - η coverage and r-z footprint of VELO highly related
 - Mechanical constraints from closing to beampipe for UT/MT
 - We want to match acceptances between subdetectors

We need to align between the sub-detectors and take into account what \Leftarrow coverage we need from physics

• We want to know - how would reducing acceptance affect the physics from LHCb?

Matt Needham, <u>110th LHCb week</u>

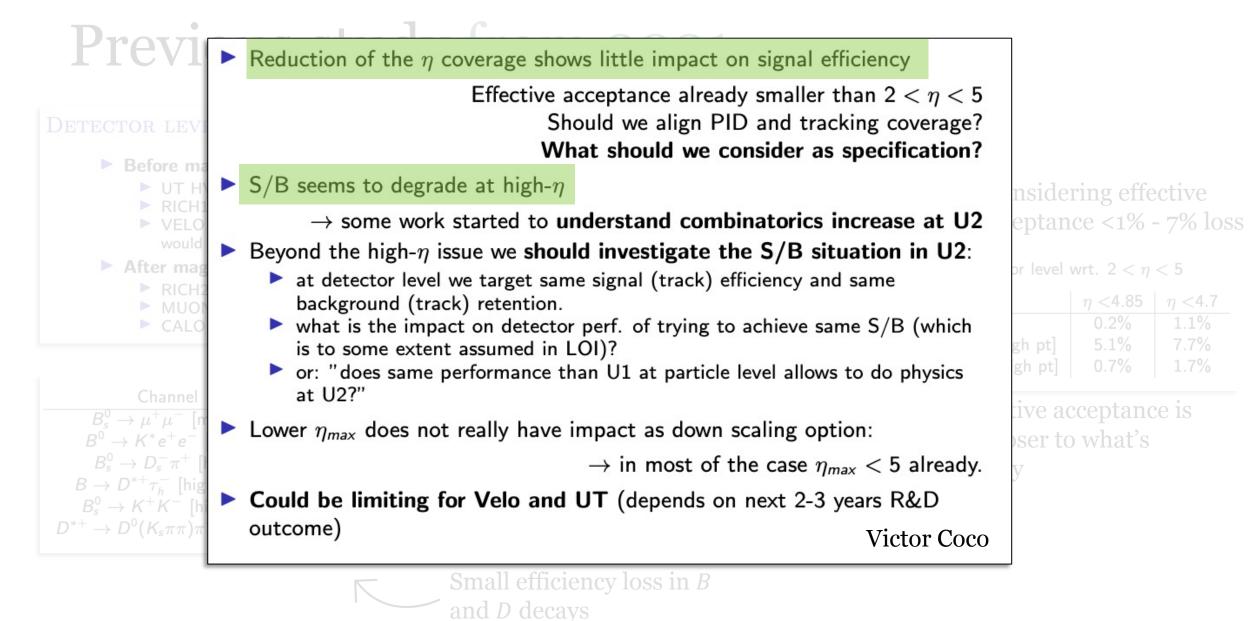
Previous study from 2021

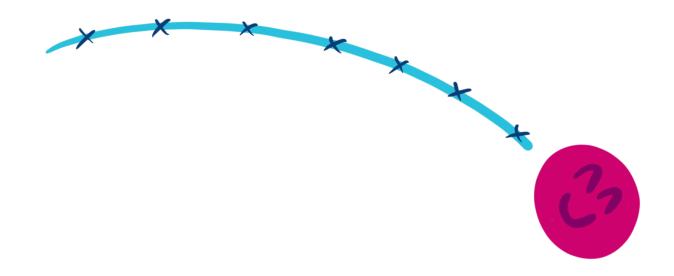
DETECTOR LEVEL CONSIDERATION

- **Before magnet**, high- η region impact radiation and rate constraints.
 - UT HV(LV)-CMOS options radiation hardness limit translate to 4.85(4.95)
 - **RICH1** covers $\eta < 4.4$ (beam-pipe at 25mrad).
 - VELO at high-η has poor z-pointing, larger T.o.F, having to go toward SB would imply larger z to cover high-η.
- After magnet, less impact because the magnet swipe
 - ▶ RICH2 acceptance and SciFi/MT hole correspond to η < 4.9
 - MUON inner angular accept. at 16 mrad ($\eta < 4.85$)
 - CALO inner hole covers $\eta < 4.6 4.8$ @ U2 (~ 40% energy from neutrals)

	Channel	η <4.85	η <4.7	
1	$B_s^0 ightarrow \mu^+ \mu^-$ [muon]	0.15%	0.8%	
1	$B^0 o K^* e^+ e^-$ [elect]	0.2%	0.6%	same for comb and part. reco
1	$B^0_s ightarrow D^s \pi^+$ [hadr]	0.4%	1.3%	w/o sel. 1.1%, 2.9%
1	$B ightarrow D^{*+} au_h^-$ [high mult]	0.2%	0.6%	similar loss for the 6 tracks
1	$B^0_s ightarrow K^+ K^-$ [high pt]	0.05%	0.2%	w/o PID 0.4%, 1.5%
	$D^{*+} ightarrow D^0(K_s\pi\pi)\pi^+ \ [{ m low} \ { m pt}]$	0.5%	1.2%	Background 1.1%, 2.3%

 $\underbrace{\qquad \qquad Small efficiency loss in B}_{\text{mary Richardson-Slipper}}$

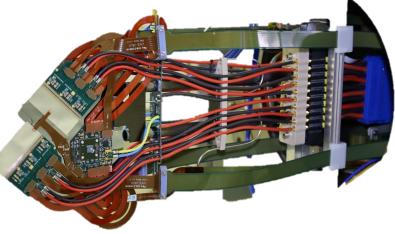

QEE: not considering effective
 detector acceptance <1% - 7% loss


▶ Studied relative loss at generator level wrt. $2 < \eta < 5$

Channel	η <4.85	η <4.7
H ightarrow cc [jets]	0.2%	1.1%
$Z ightarrow \mu^+ \mu^-$ [very high pt]	5.1%	7.7%
$W^+ ightarrow \mu^+ u$ [very high pt]	0.7%	1.7%

assuming detector effective acceptance is already around 4.8 - closer to what's observed with *B*/*D* decay

Victor Coco

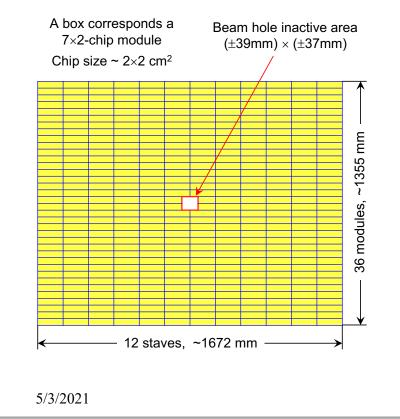


Subdetectors

What acceptance are we working towards? Does a smaller acceptance provide flexibility for detector design?

The VELO

- Current VELO covers up to $\eta = 5$
- In U2, the most relief comes from reducing to a coverage up to $\underline{\eta = 4.8}$
- Between 4.7 and 4.8, relaxes (*z*, *R*) positions of modules can spare modules and gives freedom to move in *R* if radiation hardness not met



Jianchung Wang

The UT

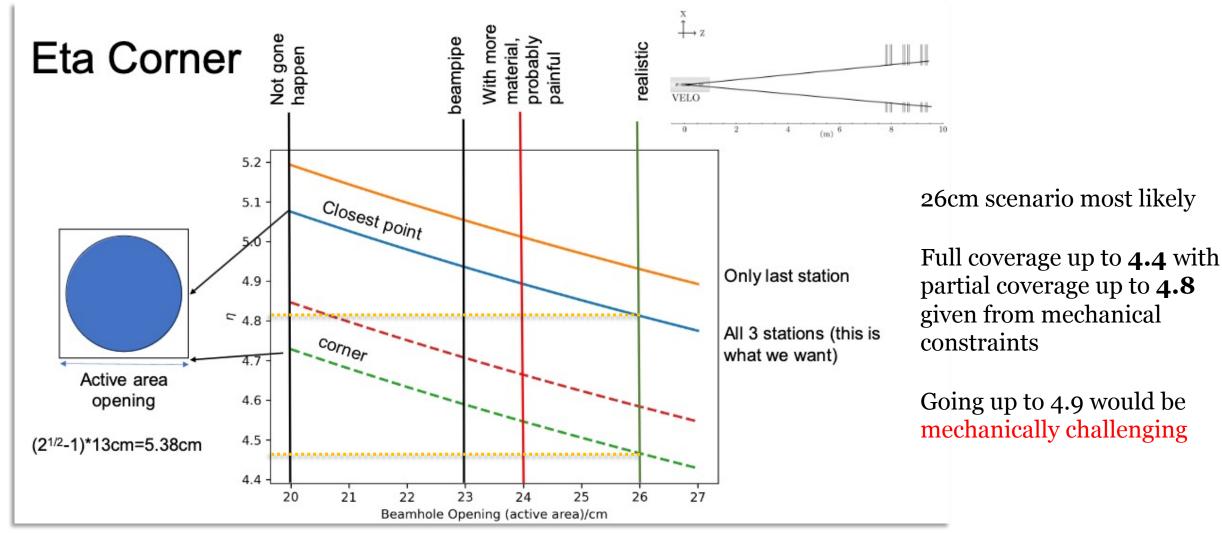
U2 UT Geometric Configuration

- The U2 UT has 4 detector planes, at Z similar to the current UT. The number of planes may be reduced to 3, pending further studies.
- A plane has 12 staves, covers ~1672 mm in the X direction, with 2 mm overlaps.
- A stave has 36 modules, covers ~1355 mm in the Y direction.
- A module consists of 7×2 sensor chip. In the outer regions of each plane dual-modules are used for efficient IpGBT.
- The central 4×4 chips are removed for beam pipe, covers (±39mm)×(±37mm).
- In total: 4 layers, 48 staves, 1728 modules, 24128 chips.

7

Maximum radius from beampipe – 53.7mm

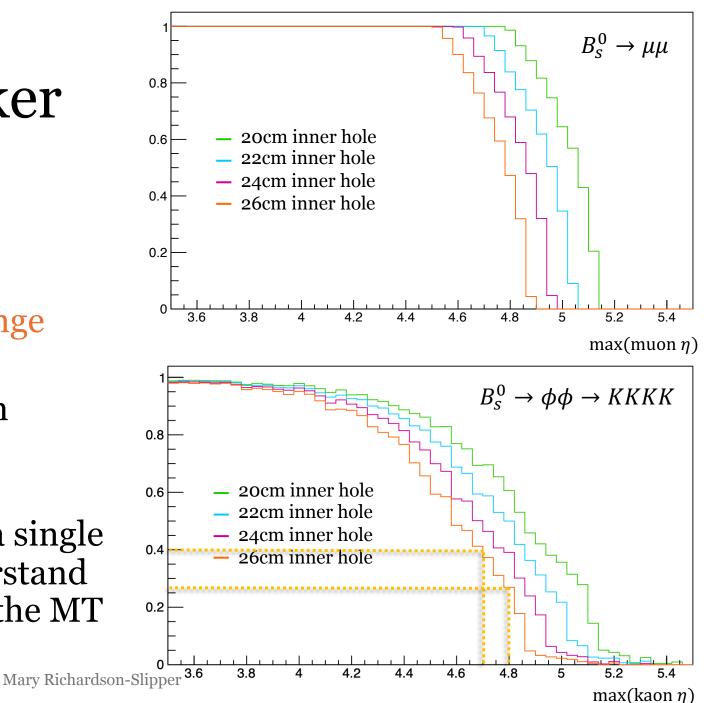
First station at 2317.5mm


100% efficiency up to4.46

Minimum radius from beampipe – 37mm

Partial efficiency up to 4.83

the central modules can be rearranged for a different hole size matched with the radiation resistance and rate requirements

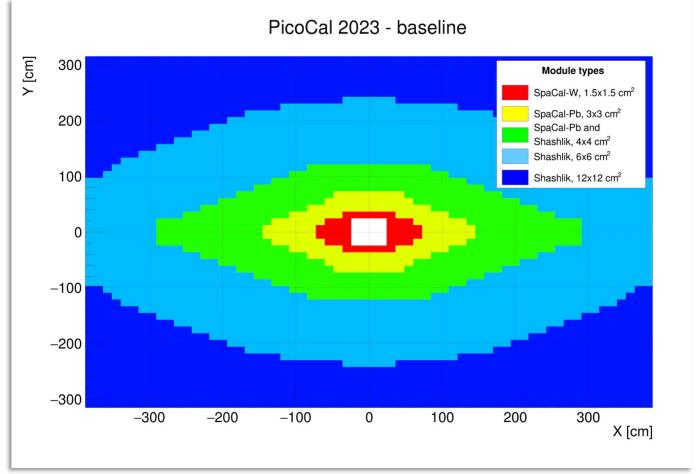

The Mighty Tracker

The Mighty Tracker

$$\epsilon = \frac{N_{\text{inside}}^{X \text{ cm}}}{N_{\text{inside}}^{0 \text{ cm}}}$$

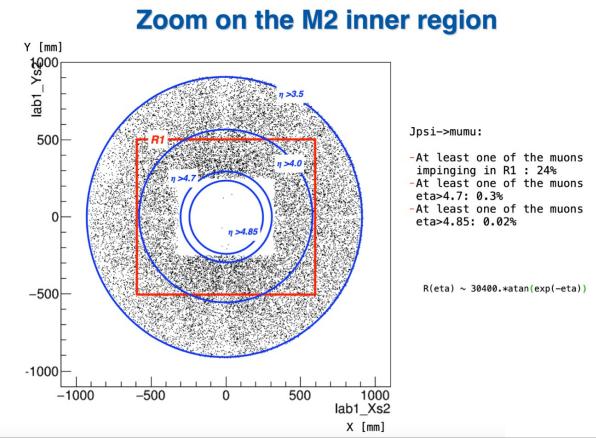
X = 20, 22, 24 and 26

- 26cm beam pipe hole orange line
- This is max(η) at production before the magnet
- Using RapidSim with U2 momentum smearing, and a single magnet kick model to understand which tracks are not inside the MT



Philipp Roloff

CALO


Beam hole of the ECAL is 4x4modules (or $48 \times 48 \text{ cm}^2$) at 12.6 meters.

For straight lines (e.g. photons), this corresponds to 1.1 - 1.5 degrees or an eta range of 4.3 - 4.7

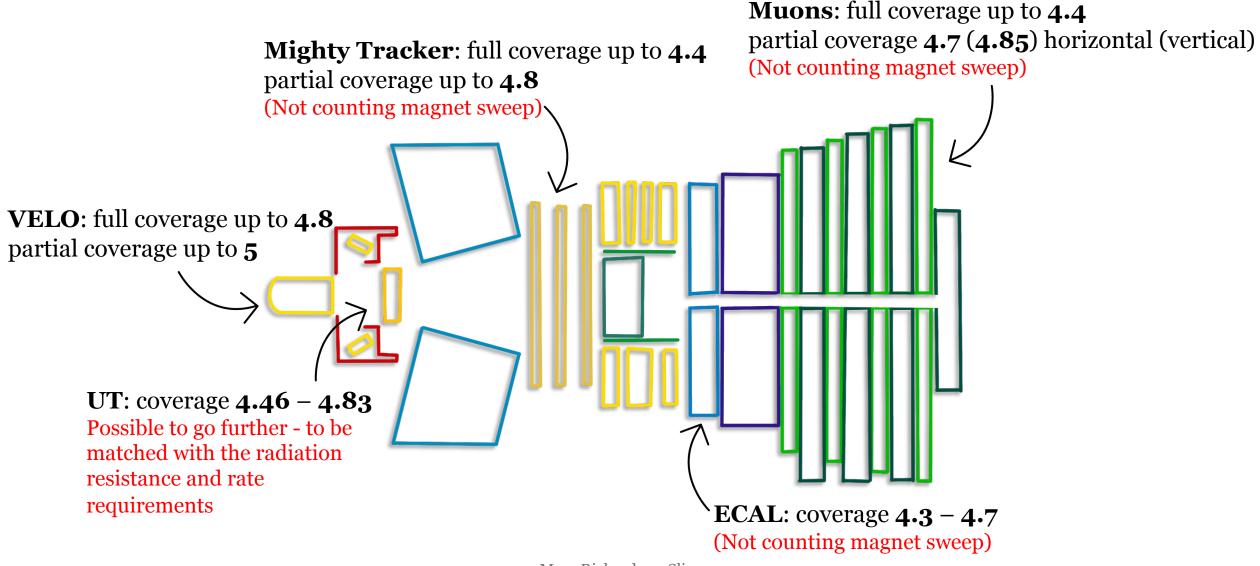
200

The Muon stations

Momentum spectrum in detector regions htemp 0.4 2016 Entries 7.548e+04 Mean 0.35 $J/\psi \rightarrow \mu^+\mu^-$ Std Dev 4.925e+04 0.3 R1 0.25 **R2** 0.2 **R3** 0.15 **R4** 0. 0.05

Present acceptance is 4.7(4.85)in horizontal (vertical) planes with no plans to reduce the acceptance (full coverage 4.4)

100

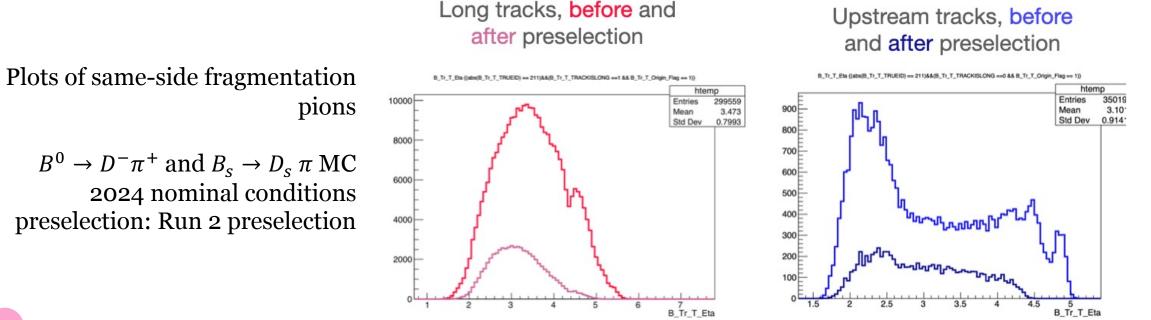

150

M2 may be reduced, but M3-5 will still cover the acceptance

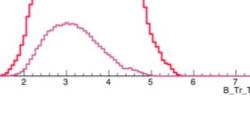
Mary Richardson-Slipper

250

Summary of acceptances


Physics cases and LHCb's uniqueness

Want to understand how a reduction in high- η acceptance will affect our physics programme


Claire Pouvré, Sara Celani

Flavour tagging perspective

• Tracks from B – population at high η – hadronization giving low–angle tracks

Mary Richardson-Slipper

Flavour tagging perspective

 $B^0 \to D^-\pi^+$ and $B_s \to D_s \,\pi$ MC 2024 nominal conditions preselection: Run 2 preselection

		Same-side fragmentation tracks		Opposite-side decay tracks	
		before presel after presel		before presel	after presel
LONG	> 4.7	7.5%	2.1%	4.5%	2.2%
	> 4.8	5.5%	1.2%	2.8%	1.0%
UPSTREAM	> 4.7	5.3%	2.2%	4.4%	4.8%
	>4.8	3.4%	1.5%	2.8%	3.1%

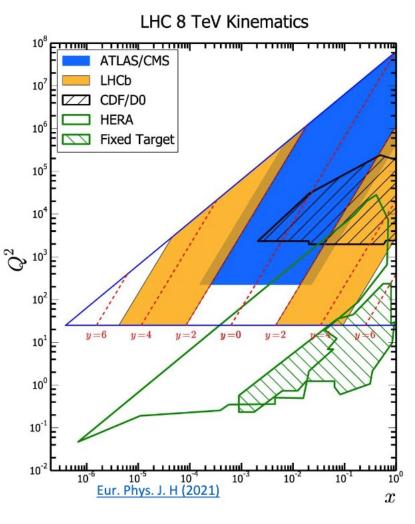
High- η tracks may be powerful

Not clear how these affect tagging performance

Would require a major study

Melissa Cruz Torres, Ozlem Ozcelick, Peilian Li, Stefano Perazzini, Resmi Puthumanaillam, Wenbin Qian

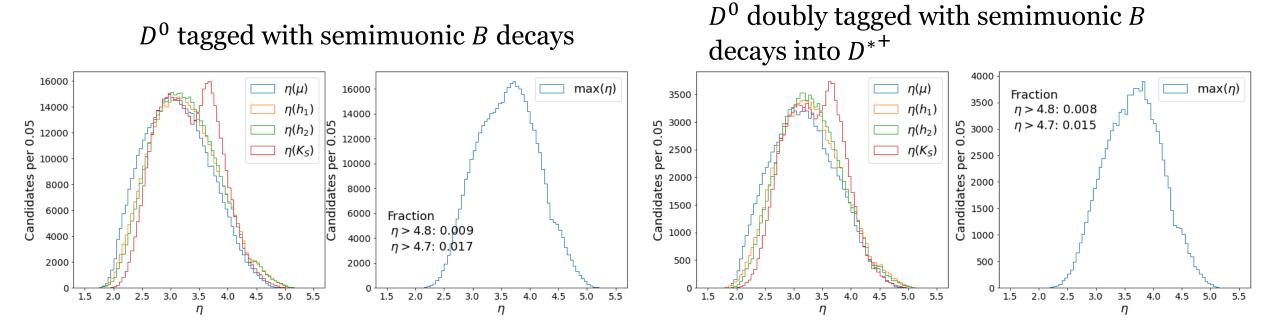
BnoC, B2CC and B2OC


- Concerns raised about the affect this could have on flavour tagging (discussed in prev. slides)
- Main charge asymmetry in the RICH from particles going into beampipe after T stations and before RICH2
 - High momentum and high rapidity tracks
 - Could be worth to check the effect of reducing the acceptance

Do not foresee it will affect these programs apart from loss efficiencies

B&Q

- Reducing inner acceptance reduces uniqueness of production in low *x*, high *Q*²
- Central Exclusive Production HeRSChel physics motiviation
 - Is this something we can still consider at high pileup?


<u>Saliha Bashir – Hadron Production</u> <u>at LHCb Experiment</u>

Marco Gersabeck, Nathan Jurik, Guilia Tuci, Jairus Patoc, Federico Betti, Tommaso Pajero

Charm

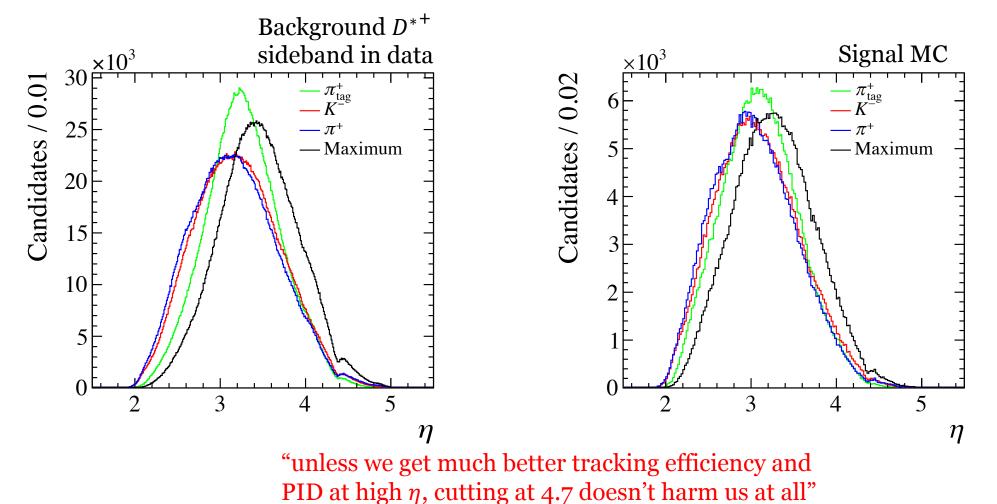
 $D^0 \rightarrow K_S \pi^+ \pi^-$ with a combination of long and downstream K_S^0 candidates, and offline selection applied on top of trigger requirements for Run 2 data:

The plots are prepared using the pseudorapidity of the K_S^0 rather than those of its decay products, but this is not expected to be the limiting factor in the precision of the study.

Mary Richardson-Slipper

Charm

- Some CP violation measurements applied $\eta \in [2, 4.2 4.3]$ in Run 2 the material budget and consequently the detection asymmetries outside of this range were significantly larger
- For measurements which did not apply η selections, like ΔA_{CP} , the efficiency loss is at most **0.4%** on $D^0 \rightarrow K^+K^-$ and $D^0 \rightarrow \pi^+\pi^-$, so negligible.
- WS/RS ratio in $D^0 \to K^{\pm}\pi^{\mp}$ decays after the offline selection:


	$\eta < 4.7$	$\eta < 4.8$	$\eta < 4.85$
Signal	0.15%	0.07%	0.04%
Background	0.44%	0.22%	0.14%

Marco Gersabeck, Nathan Jurik, Guilia Tuci, Jairus Patoc, Federico Betti, Tommaso Pajero

Charm

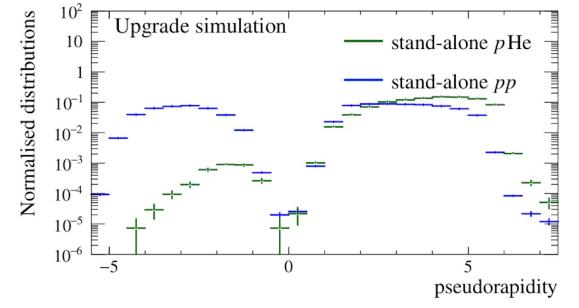
• WS/RS ratio in $D^0 \to K^{\pm}\pi^{\mp}$ decays after the offline selection:

Marco Gersabeck, Nathan Jurik, Guilia Tuci, Jairus Patoc, Federico Betti, Tommaso Pajero

Charm

• For $D^0 \to \pi^+ \pi^- \pi^+ \pi^-$, the fraction of signal candidates passing the trigger and offline selections in Run 2 that are rejected by the requirement $\eta < 4.8(4.7)$ is **7**.8(8.3)% he requirement $\eta < 4.8(4.7)$ is 7.8(8.3)% • Similar expected for $D^0 \to K^+ K^- \pi^+ \pi^-$ and $D^0 \to K^\pm \pi^\mp \pi^+ \pi^-$ (decrease looks bigger than expected)

• Based on studies for the measurement of CP asymmetry in $D^0 \rightarrow D^0$ $K_S^0 K_S^0$ decays (Fig. 9 <u>LHCb-INT-2023-003</u>), current HLT1 line for $K_{\rm S}^0$ particles looks only for candidates in the range $\eta \in [2, 4.2]$ to improve the S/N ratio


Saverio Mariani, Thomas Boettche, Matt Durham

Ions and fixed target

- For some analyses, cuts at eta = 4.8
- Last pseudorapidity decimals are removed to avoid border effects – will reducing our inner acceptance shift these border effects?
- Parasitic fixed-target LHCb pseudorapidity coverage is shifted and tracks have a lower aperture with respect to *pp*

The more we cut, the more we lose

QEE - Muons

- Only went as far as $\eta = 4.5$ in Run-1 and Run-2
- The forward region provides crucial inputs for the Global Fit of proton parton distribution functions (PDFs) very high and very low *x* regions ATLAS and CMS cannot reach
- The very large η region is needed for W mass and precision EW measurements combining LHCb results with that from ATLAS and CMS could reduce the PDFs uncertainty
- Need sufficient inter-sub-detector redundancy to measure reconstruction efficiencies in Run-1 and Run-2 lack the necessary redundancy to measure tracking efficiencies effectively
- The $W \rightarrow \mu \nu$ measurements needs an additional 1/2 isolation cone (0.2 extra) for events in detector boundary regions for Muon isolation

Qualitative, not quantitative

Federico Redi, Hang Yin, Andrii Usachov

QEE - electrons

- Electron acceptance is limited to around $\eta = 4.2$ in Run-1 and Run-2
- To enhance electron and photon studies, a larger acceptance of the electromagnetic calorimeter is crucial

QEE - BSM

- Long lived particle (LLP) studies benefit from extended acceptance
 - Enhance our ability to explore exotic Higgs decays and other phenomena
- Muon stations serve as a subdetector for LLP studies
 - Forward region is crucial for these studies.
 - Ongoing studies on muon showers are included in the Run 3 program

Qualitative, not quantitative

Federico Redi, Hang Yin, Andrii Usachov

QEE – jets

- Jet reconstruction limited to **4.2** due to ECAL and HCAL size constraints expanding the ECAL acceptance essential for accurate jet reconstruction
- Wider tracking acceptance enhances our capabilities in studies of jets substructure
 - Jets with larger cone size of $R \sim 0.8$ valuable for studying boosted objects and gluon splitting to $\overline{c}c$ and $\overline{b}b$ pairs
- Final η bin (from **3.5 to 4.5**) provides important information for Z + c jet measurement
- Top quarks in LHCb produced from *qg* and *qq* (ATLAS/CMS primarily *gg*) LHCb forward region plays role in testing QCD calculations
- LHCb has better sensitivity for top charge asymmetry measurement, especially $\eta > 4$, compared to ATLAS and CMS

Semileptonics

- Reduction in high η values is not seen as a significant issue
- Decrease in η could lead to shape variations within the phase space of the decay of interest, which necessitates further investigation.
- For angular analyses, the efficiency variation across the phase space is of concern, and reduced acceptance could lead to significant shape variations. This aspect requires detailed study on an analysis-specific basis.

It is expected that the MC samples will accurately capture variations.

Renato Quagliani, Ulrik Egede

Rare decays

From local tests over Run-1/-2 sample with Muon in final states

• $B^0 \to K^* \mu \mu$ after pre-selection

	$\eta < 4.7$	$\eta < 4.8$
$(0.1 < q^2 < 8.0)$	86%	91%
$(11.0 < q^2 < 12.5)$	88%	93%
$(15.0 < q^2 < 20.0)$	87%	92%

•	B^{0}	\rightarrow	K^*	[•] μμ	after	pre-sel	lection
---	---------	---------------	-------	-----------------	-------	---------	---------

	$\eta < 4.7$	$\eta < 4.8$
Before reconstruction	87%	87.7%
After reconstruction and prelim. selections	98.3 %	99.2 %

For same CALO/RICH acceptances, similar cuts as Run-1/-2 Cutting at $\eta < 4$. *X* not so bad for electrons Material budget and bremsstrahlung more relevant

Renato Quagliani, Ulrik Egede

Rare decays

- Will need to assess the muon decays $K_S \rightarrow \mu\mu$ and $B_s \rightarrow \mu\mu$
- Impact on these decays correlated to expected changes in Muon momentum acceptance
 - Particular attention needed concerning muon station design and shielding combined to the trackers for high momentum tracks
 - High momentum $B_s \rightarrow \mu\mu$ can be studied with Renato's parameterization tool

Renato Quagliani, Ulrik Egede

Rare decays

- Probably for soft muons/hard muons we will have different effects when correlated with the muon shielding acceptance.
- For electrons, losses due to material budget more relevant than anything else together with the 'necessary' acceptances needed to be made to have a good PID on particle [RICH/CALO].

Summary

- From the detector design point of view, **going to 4.7 provides relief**, but of course we do not get this for free
- Lose efficiency, bring edge effects closer by reducing our inner acceptance, impact fixed target experiments, reduce LHCb's unique acceptance...
- However, we want RICH, CALO and Muon station acceptances to match tracking acceptance too
 - CALO **4.3 4.**7
 - Muon full coverage **4.4** horizontal **4.7** (vertical **4.85**)

Take-home message and open questions...

- Deciding a benchmark on the acceptance not an easy task...
- Modest impact in most channels reducing acceptance to **4.7**
 - Is 4.7 enough for the cases that rely on high η ? E.g., QEE jet studies
- Muon inner acceptance 4.4 full coverage Do we need to go
 CALO inner acceptance 4.3 4.7 Interval further than these?
- Are high η tracks key to flavour tagging?

Thank you to everyone who provided input for these slides!