



LHCb Upgrade II Tracking Workshop

# UT design and simulation

## Xuhao Yuan for U2UT group 2024-03-07



### A new UT in UII



Simulation performed with UT in UII condition

- Max hit density ~ 6 hits/cm<sup>2</sup>/BX for beam-beam crossings in pp
- For Pb-Pb ~ 3 hits/cm<sup>2</sup>/BX, but multiplicity is higher

Current UT cannot work safely after x 7.5 increase in luminosity

- Max occupancy ~ 10%
- Data rate much more than current UT can handle
- > Max fluence of ~ 3 x  $10^{15}$  n<sub>eq</sub>/cm<sup>2</sup> may be too high for current sensor

UT in UII: A MAPS-based pixel detector

High Voltage CMOS or CMOS with Small electrode







Beam center



#### **Technical options**





CMOS with small electrode



Two scenarios: HV CMOS or CMOS with small electrode. Each choice has its pros and cons

Will not touch details for chips design, but remind the change of the Chip/pixel size and also the position resolution

| Characteristics     | CMOS with<br>small electrode                            | HV-CMOS                   |  |  |  |
|---------------------|---------------------------------------------------------|---------------------------|--|--|--|
| Chip size           | 3.5 x 3.5 cm <sup>2</sup>                               | 2.0 x 2.0 cm <sup>2</sup> |  |  |  |
| Pixel size          | 30 x 30 μm²                                             | 50 x 150 μm <sup>2</sup>  |  |  |  |
| Chip thickness      | ~ 100 um                                                |                           |  |  |  |
| Position resolution | 5 - 10 μm                                               | 15, 40 μm                 |  |  |  |
| Time resolution     | $\mathcal{O}(1)$ ns                                     |                           |  |  |  |
| Power consumption   | 100 – 300 mW/cm <sup>2</sup>                            |                           |  |  |  |
| Radiation dose      | 3 x 10 <sup>15</sup> n <sub>eq</sub> /cm <sup>2</sup> , | or 240 Mrad TID           |  |  |  |
| Data rate per chip  | Up to 30 Gb/s                                           | Up to 9 Gb/s              |  |  |  |







#### U2UT design

- Detector
- Possible scenarios for scoping document

#### U2UT detector simulation

- Detector description
- ➢ Run 5 events simulating
- Software development in LHCb frame work



## **UT** Geometric configuration



For HV-CMOS design



- UT has 4 detector planes (layers), at Z position similar to the current one
- 12 staves for each plane, covers ~ 1672 mm
  in X direction, with 2mm overlap
- > A stave has 36 modules, covers ~1355 mm in Y direction
- A module has 7x2 sensor chip. In the outer regions of each plan dual-modules are used for efficient lbGBT
- The central 4x4 chips are removed for beam pipe, covers (±39 mm)x(±37 mm)
- In total: 4 layers, 48 staves, 1728 modules,
  24 128 chips



 $\succ$ 



#### 4-type staves & 5-type modules

For HV-CMOS design







| Ring           | 5    | 4    | 3    | 2    | 1     |
|----------------|------|------|------|------|-------|
| e-links / chip | 1    | 1    | 1    | 1-3  | 2-7   |
| Gbps / e-link  | 0.32 | 0.64 | 1.28 | 1.28 | 1.28  |
| lpGBT / module | 0.5  | 1    | 2    | 7    | 14/10 |
| Num of modules | 1312 | 240  | 80   | 64   | 32    |
| Num of IpGPTs  | 656  | 240  | 160  | 448  | 384   |

- According to data rate, 5-type modules designed
- > UT plan consists of type A, B, C and D staves





#### Other possible scenarios of U2UT



Details for the performance based on these designs can be found in Benjamin and Carlos talks

Reduce coverage: 12->10 staves x (36 -> 32) modules (10-stave structure)

Reduce 26% detection area

3-layer detector

- $\succ$  # of Si chips reduced to 75%  $\rightarrow$  cost reduce to 80%
- $\blacktriangleright$  Efficiency reduced by ~%, but  $\mathcal{P}_{\text{Ghost}}$  increased huge

Reduce the peak luminosity  $(1.5->1.0)x10^{34} \text{ cm}^{-2}\text{s}^{-1}$ 

Designs of chips & modules are less difficult



Layer 1

2

Layer





#### U2UT design

- Detector
- Possible scenarios for scoping document

#### U2UT detector simulation

- Detector description
- ➢ Run 5 events simulating
- Software development in LHCb frame work



#### Detector modelling in the software



Detector description has been developed for the large electrode solution (HV-CMOS). The default design with 4 layers and 12 stave/layer applied

MR into LHCb \$Detector ready

For scoping document studies, the scenarios with less layers OR less staves also ready at

- 3-layers design: <u>https://gitlab.cern.ch/lhcb/Detector/-/tree/layerbranch?ref\_type=heads</u>
- 10-stave design: <u>https://gitlab.cern.ch/lhcb/Detector/-/tree/stavebranch?ref\_type=heads</u>

For the small electrode solution, development ongoing







#### **Radiation length**





#### Not the final version, only for software development

- VTRx+ and lpGBT composite to be optimized with better information
- Some electronic components not included yet
  - HybridFlex need a thinner design



R.L. [%X<sub>0</sub>]

2

 $\Phi$  [rad]

| (Preliminary) | Thickness<br>[mm] | W x L<br>[mm] | RL (2< <u>n</u> <4.5)<br>[% X <sub>o</sub> ] |
|---------------|-------------------|---------------|----------------------------------------------|
| Pixel Sensor  | 0.200             | 20.2 x 21.4   | 0.24                                         |
| lpGBT         | 1.250             | 9 x 9         | 0.25                                         |
| VTRx+         | 4.000             | 10 x 20       | 0.27                                         |
| HybridFlex    | 0.300             | 142 x 75      | 0.42                                         |
| Kapton Tape   | 0.100             | 142 x full    | 0.14                                         |
| BareStave     | 4.000             | 142 x full    | 0.21                                         |
| One plane     | -                 | 1.54          | 1.54                                         |





### Gauss outputs for U2UT default design





ليترا بتنتيا بتنتيا بتنتيا

Yuan XH. IHEP



#### Gauss outputs for other scenarios



Yuan XH, IHEP

3959482

2800

2488

137.1



## UT in long track system





VELO-SciFi tracks w/o UT

Long tracks reconstructed w/ or w/o UT, by fitting in both XZ and YZ plane
 ➢ In XZ plane, a 4<sup>th</sup>-order polynomial used for Magnet effects
 ➢ In YZ plane, a linear func. used
 For a quick test, we only select Kaon tracks, and run3 condition

VELO+SciFi only : the total efficiency is 50.18+/-0.41 % and the "ghost rate" is 34.24+/-0.12 %

Drop of the efficiency due to a rough x<sup>2</sup>/ndof cut



VELO+SciFi +UT : the total efficiency is 94.36+/-0.19 % and the "ghost rate" is 4.54+/-0.01 %



Yuan XH, IHEP More details can be found in Benjamin and Carlos talks 15



#### Development in LHCb framework

Current UT

Injecting particle

New UT

Injecting particle

For UT detector, the simulation for digitization is done

- Based on large electrode tech., HV-CMOS
- New algorithms for pixels instead of strips
- FE simulation parameters copy from current UT



Hottest pixel occupancy estimated based on 1.2K miniBias MC events, where VELO and FT are current ones

Consistent with estimation in FTDR



#### Tracking in LHCb framework



Development of U2UT detector in LHCb tracking system ongoing
 ➤ Two methods: (1) UpstreamTrack; (2) StandaloneTrack

For UpstreamTrack: algorithm similar as current UT, but much small search window in UT thanks to the better special resolution in both X and Y
 ➢ Inputs can be smeared MCHits OR UTHits decoded from RawBank



UpstreamTrackChecker\_9ecba7fd UpstreamTrackChecker\_9ecba7fd UpstreamTrackChecker\_9ecba7fd UpstreamTrackChecker 9ecba7fd UpstreamTrackChecker\_9ecba7fd UpstreamTrackChecker 9ecba7fd UpstreamTrackChecker\_9ecba7fd UpstreamTrackChecker\_9ecba7fd UpstreamTrackChecker\_9ecba7fd UpstreamTrackChecker 9ecba7fd UpstreamTrackChecker\_9ecba7fd UpstreamTrackChecker 9ecba7fd

| <b>INFO</b> | Results                              |
|-------------|--------------------------------------|
| INFO        | **** Upstream                        |
| INF0        | 01_velo                              |
| INFO        | 02_velo+UT                           |
| <b>INFO</b> | 03_velo+UT_P>5GeV                    |
| INFO        | 04_velo+notLong                      |
| INFO        | 05_velo+UT+notLong                   |
| INFO        | 06_velo+UT+notLong_P>5GeV            |
| INFO        | 07_long                              |
| INF0        | 07_long_strange                      |
| INFO        | 08_long_P>5GeV                       |
| INF0        | <pre>08_long_strange_P&gt;5GeV</pre> |
| <b>INFO</b> | 09_long_fromB                        |
| INFO        | 09_long_fromD                        |
| INF0        | <pre>10_long_fromB_P&gt;5GeV</pre>   |
| INFO        | 10_long_fromD_P>5GeV                 |
| INFO        | <pre>11_long_electrons</pre>         |
| <b>INFO</b> | 14_long_fromB_P>3GeV_Pt>0.5GeV       |
| INF0        | 14_long_fromD_P>3GeV_Pt>0.5GeV       |
| INFO        | 14_long_strange_P>3GeV_Pt>0.5GeV     |
| INFO        | 15 UT long fromB P>3GeV Pt>0.5GeV    |

|                                                          | Ξ  |
|----------------------------------------------------------|----|
|                                                          | 3  |
|                                                          |    |
| 0.2 /                                                    | -  |
| $\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 $ |    |
| p (Ge                                                    | V) |

|   | 2589 | tracks | includi | ing     | 34    | ghosts | [ | 1.31 | %], | Event a | verage | 1  | .01 % *** | **     |   |
|---|------|--------|---------|---------|-------|--------|---|------|-----|---------|--------|----|-----------|--------|---|
| : | 2426 | from   | 7790    | [ 31.14 | %] 12 | clones | [ | 0.49 | %], | purity: | 99.92  | %, | hitEff:   | 98.83  | % |
| : | 2426 | from   | 7084    | [ 34.25 | %] 12 | clones | [ | 0.49 | %], | purity: | 99.92  | %, | hitEff:   | 98.83  | % |
| : | 1895 | from   | 2631    | [ 72.03 | %] 8  | clones | [ | 0.42 | %], | purity: | 99.91  | %, | hitEff:   | 99.02  | % |
| : | 403  | from   | 3543    | [ 11.37 | %] 2  | clones | [ | 0.49 | %], | purity: | 99.86  | %, | hitEff:   | 98.97  | % |
| : | 403  | from   | 2839    | [ 14.20 | %] 2  | clones | [ | 0.49 | %], | purity: | 99.86  | %, | hitEff:   | 98.97  | % |
| : | 245  | from   | 359     | [ 68.25 | %] 1  | clones | [ | 0.41 | %], | purity: | 99.86  | %, | hitEff:   | 99.36  | % |
| : | 2023 | from   | 4247    | [ 47.63 | %] 10 | clones | [ | 0.49 | %], | purity: | 99.93  | %, | hitEff:   | 98.80  | % |
| : | 71   | from   | 245     | [ 28.98 | %] 1  | clones | [ | 1.39 | %], | purity: | 99.80  | %, | hitEff:   | 98.68  | % |
| : | 1650 | from   | 2273    | [ 72.59 | %] 7  | clones | [ | 0.42 | %], | purity: | 99.92  | %, | hitEff:   | 98.97  | % |
| : | 58   | from   | 88      | [ 65.91 | %] 0  | clones | [ | 0.00 | %], | purity: | 99.75  | %, | hitEff:   | 98.71  | % |
| : | 3    | from   | 4       | [ 75.00 | %] 0  | clones | [ | 0.00 | %], | purity: | 100.00 | %, | hitEff::  | 100.00 | % |
| : | 32   | from   | 54      | [ 59.26 | %] 0  | clones | [ | 0.00 | %], | purity: | 100.00 | %, | hitEff:   | 99.22  | % |
| : | 3    | from   | 3       | [100.00 | %] 0  | clones | [ | 0.00 | %], | purity: | 100.00 | %, | hitEff::  | 100.00 | % |
| : | 24   | from   | 29      | [ 82.76 | %] 0  | clones | [ | 0.00 | %], | purity: | 100.00 | %, | hitEff:   | 98.96  | % |
| : | 19   | from   | 93      | [ 20.43 | %] 0  | clones | [ | 0.00 | %], | purity: | 100.00 | %, | hitEff:   | 98.95  | % |
| : | 2    | from   | 2       | [100.00 | %] 0  | clones | [ | 0.00 | %], | purity: | 100.00 | %, | hitEff::  | 100.00 | % |
| : | 27   | from   | 30      | [ 90.00 | %] 0  | clones | [ | 0.00 | %], | purity: | 100.00 | %, | hitEff:   | 99.07  | % |
| : | 46   | from   | 59      | [ 77.97 | %] 0  | clones | [ | 0.00 | %], | purity: | 99.69  | %, | hitEff:   | 98.91  | % |
| : | 2    | from   | 2       | [100.00 | %] 0  | clones | [ | 0.00 | %], | purity: | 100.00 | %, | hitEff::  | 100.00 | % |
|   |      |        |         |         |       |        |   |      |     |         |        |    |           |        |   |



## UT standalone track in LHCb framework



More details can be found in Benjamin and Carlos talks

- UT standalone track in LHCb framework developing
- > Loop over "1<sup>st</sup>-layer" hits and those in the searching window on downstream layers
- > Pickup the "good" tracks with MIN chisq from two linear fits in both XZ and YZ planes



7 x 7 chips as searching window

Smeared MCHits as input

The interface to LHCb tracking system under developed

| or standard                            |             | lans          |
|----------------------------------------|-------------|---------------|
| Evt number                             | 1           | 10            |
| UTHits Related MCParticle              | 1731        | 15766         |
| 3-hit real track can reco              | 632         | 6113          |
| 3-hit reconstructed right unique track | 604         | 5824          |
| Track efficiency                       | 604/632~95% | 5824/6113~95% |
| Clone track of 3-hit track             | 37          | 393           |
| Ghost track of 3-hit track             | 105         | 926           |
| Ghost rate                             | 105/632~16% | 926/6113~15%  |
| 4-hit real track can reco              | 605         | 5895          |
| 4-hit reconstructed right unique track | 536         | 5081          |
| Track efficiency                       | 536/605~88% | 5081/5895~86% |
| Clone track of 4-hit track             | 51          | 544           |
| Ghost track of 4-hit track             | 5           | 46            |
| Ghost rate                             | 5/605~0.8%  | 46/5895~0.7%  |

IIT standalone track at Run5

#### 3/7/24



#### Conclusion



U2UT detector design in FTDR

- HV-CMOS: Large-electrode chip, pixel size 50 x 150 μm
- $\blacktriangleright$  CMOS with small electrode: pixel size 30 x 30  $\mu$ m

For scoping document

- 4-layer vs 3-layer design
- Less modules/staves used in U2UT detector
- Reduce peak luminosity

U2UT geometry description added into LHCb framework

- Including: Default HV-CMOS; 3-layer; 10-stave structure
- CMOS with small electrode scenario will be ready soon

Simulation studies on U2UT

- Based on LHCb framework, digitization is done; tracking reconstruction codes to be ready soon
- More performance results can be found in Benjamin and Carlo's talk



