
Tracking Fitting
Matthew Needham, Christoph Langenbruch, Manuel Schiller



Disclaimer

I helped write the first C++ Kalman filter over 20 years ago. I know the 
Run 1 and 2 implementation very well. In particular I wrote first 
versions of the transport tools, implementing all the physics and 
debugging. My knowledge of Run 3 software and beyond that is more 
limited.
In this talk I will do my best to tell you what should be done. The actual 
technicalities are not something I can give much help with 



Introduction

• The track fit is critical to judge key detector performance indicators
• Mass resolution, momentum resolution, impact parameters, vertexing
• Fitted tracks are input RICH pattern recognition

• Ultimate performance is determined by the measurements, magnetic field 
and material of the detector
• No magic here, pattern recognition will evolve but fit with cheated pattern   

recognition is a solid guide to what is achievable



Introduction

• For first iteration of LHCb from Letter of Intent/Technical proposal time in the 
1990s till around Re-optimization TDR in 2000 there no pattern recognition
• Performance was judged from track fit and cheated pattern recognition 

(assigning hits to tracks using MCTruth) alone
• Can question the realism, but allowed to write
• Yellow book predictions surprisingly good, e.g. based on them in Run 2 

precision of 0.012 on sin 2β should have been achieved, compared to 0.015 
we actually achieved



Towards full performance studies

Step 1 Parametric studies, fast simulation (RapidSim/emulation),
standalone studies

Step 2 Track fit with cheated pattern recognition
Allows to validate (= gain trust in) standalone studies
Evaluate ultimate performance for e.g. mass resolution
Global physics performance studies 

Step 3 Realistic pattern recognition and track fit



The track fit: Kalman filter

Main Ingredients: Hits with errors and extrapolation 
Extrapolation needs good knowledge of material and magnetic field



Detector Measurements
VELO: Move from pixels to pixels with timing in Upgrade II. For now we 
should not worry about fitting time
UT becomes UP: Pixels rather than strips
SciFi: No change from Run 3 to Run 5
MPix: Now pixels in the centre of the T-stations

Long-term we will have detailed digitizations for the pixel detectors but for 
now MCHits with smearing/some inefficiency ok for pattern/fit studies   



Detector Measurements
For the track fit rules of the game for measurements very clear
• Hit class
• Measurement provider
• Heavily templated, lots of glue code work through, but if it compiles it 

probably works
Christophe has got this working for MPix
• Can fit MPix tracks and Velo-Mpix matched tracks (Run 3 DetDesc/material)
• Need to also go through this for the UP (work but no showstoppers)



Detector Measurements

0 10 20 30 40 50
p [GeV/c]

0

0.2

0.4

0.6

0.8

1

1.2

dp
/p

 [%
]

TrackRes

p distribution TrackRes

LHCb simulation
Momentum resolution for long tracks with 
MPix from Christoph

Using Run 3 geometry XML DetDesc

Impact at high momentum from pixels is visible



Detector Material

• Momentum resolution dominated by multiple scattering. Critical to get this 
correct
• Material description comes from the transport service either via detailed 

or simplified options
• For Upgrade 2 need this to work via DD4HEP geometry

• We don’t have XML geometry

• Technically now in place, being tested by Andrii + Ben
• Summarize in following slides taken from 

https://indico.cern.ch/event/1386929/contributions/5843802/attachments
/2812188/4908546/Multiple_scattering_extrapolation_DSO.pdf

https://indico.cern.ch/event/1386929/contributions/5843802/attachments/2812188/4908546/Multiple_scattering_extrapolation_DSO.pdf


Multiple scattering extrapolation in 
Detector

A. Usachov and B. Couturier

https://gitlab.cern.ch/lhcb/Detector/-
/merge_requests/471

https://gitlab.cern.ch/lhcb/Detector/-/merge_requests/471


Material correction in the extrapolations
To correct the particle states for multiple scattering in Rec, the TrackMasterExtrapolator in Rec 
invokes  MaterialLocatorBase::applyMaterialCorrection for scattering or energy loss.

For this purpose there are state correction tools (IStateCorrectionTool) :

● StateThinMSCorrectionTool
● StateThickMSCorrectionTool
● StateElectronEnergyCorrectionTool
● StateDetailedBetheBlochEnergyCorrectionTool

Those tools uses material properties such as radiationLength, but the 
StateDetailedBetheBlochEnergyCorrectionTool also uses properties that are in DetDesc but not in 
the DD4hep/ROOT TGeo classes (C, X0, X1…)

x
Parameterize this



Implementation in DD4hep
The aforementioned properties are defined in the following paper:

M.J. Berger et al. Icru report 37. Journal of the International Commission on Radiation Units and 
Measurements,
// os19(2):, dec 1984. URL: https://doi.org/10.1093/jicru/os19.2.Report37, 
doi:10.1093/jicru/os19.2.report37.

Also used by Geant4. It is possible to compute them using using a set of reference values for each element.

⇒ This was implemented in the Detector project with MaterialHelper.cpp. It is called once a geometry 
with all its materials has been loaded to decorate the existing materials with the properties I, X0, X1, 
C,a,m that can subsequently be used by the StateDetailedBetheBlochEnergyCorrectionTool.

This could be done with very limited modifications to the code:

https://gitlab.cern.ch/lhcb/Detector/-/commits/materials_in_dd4hep/?ref_type=heads

https://gitlab.cern.ch/lhcb/Detector/-/blob/144c906aadcf63b832706ab90eb02f0f427ec9bd/Core/src/MaterialHelper.cpp
https://gitlab.cern.ch/lhcb/Detector/-/commits/materials_in_dd4hep/?ref_type=heads


Geant4 references 
● Builds simple materials from elements in GNistMaterialBuilder

● This map has been moved to DD4HEP materials

● I effective is used to compute all other parameters,
and density effect in Bethe-Bloch formula
(with the same formulas as in DetDesc)

● Some I effective values are different wrt DetDesc
(no visible effect)

I effective

https://github.com/Geant4/geant4/blob/860a2b92bff1fbd70bc77cf7b43f8558634763b2/source/materials/src/G4NistMaterialBuilder.cc


● Thanks to material dumper, we have DetDesc materials in json
(+ some manual changes of material names)

● test_Materials_properties compares with those built in DD4HEP

Materials in DetDesc vs DD4HEP

If material is missing it doesn’t necessarily mean that it is used in the geometry

● For some DD4HEP materials there is no match in DetDesc and vice versa

https://gitlab.cern.ch/lhcb/Detector/-/blob/8496e99da919841866b3560689e7d982d726805f/tests/materials/materials.json
https://gitlab.cern.ch/lhcb/Detector/-/blob/8496e99da919841866b3560689e7d982d726805f/Core/tests/src/test_Materials_properties.cpp


● Catched 2 issues in materials
● Setting units led to extremely large values of density

Materials in DetDesc vs DD4HEP



Test with particle gun
● Setup to run particle gun in a loop for different tx, ty, qop (both DetDesc and DD4HEP)

https://gitlab.cern.ch/bcouturi/gaussino-pgun/-/merge_requests/1

● There is low momentum background from secondary particles 
→ removed by momentum cut and fitting

● There are some rare corner cases when distribution is not gaussian 

p=2.5 GeV p=12.5 GeV

https://gitlab.cern.ch/bcouturi/gaussino-pgun/-/merge_requests/1


Tracking performance with expected-2024 sample
● With expected-2024 conditions the drop in efficiency is smaller - 3.5% ( compared to 10% before)
● Some important changes in the geometry?
● Resolution check shows not zero pulls in x, y and momentum

● Also many differences in other counters for not fitted tracks as well 
(MR by Miroslav https://gitlab.cern.ch/lhcb/Moore/-/merge_requests/2907)

INFO Long/x pull     : mean =  -1.232 +/- 0.300, RMS = 2.546 +/- 0.152
INFO Long/y pull    :  mean =  -2.955 +/- 0.086, RMS = 1.747 +/- 0.090
INFO Long/tx pull    : mean =  0.000 +/- 0.017, RMS = 1.086 +/- 0.016
INFO Long/ty pull    : mean =  0.002 +/- 0.016, RMS = 1.059 +/- 0.015
INFO Long/p pull     : mean =  -0.467 +/- 0.027, RMS = 1.703 +/- 0.021
INFO Long/probChi2   :  mean =  0.327 +/- 0.005, RMS = 0.327 +/- 0.003
INFO Long/x resolution / mm :  RMS =  127.329 +/- 19.138 micron
Long/y resolution / mm:  RMS  =  132.978 +/- 12.207 micron
Long/dp/p:  mean  =  -0.0018 +/- 0.0002, RMS =  0.0096 +/- 0.0002

https://gitlab.cern.ch/lhcb/Moore/-/merge_requests/2907


Ideal track creator

• Assign hits to tracks based on MCHits (cheated pattern recognition)
• Allows to fit tracks, get resolutions for RICH, mass resolutions
• Some work needed here with Pixel measurements ready but 

straightforward



Summary

• Work ongoing on pixel measurement providers
• MP works, UP to be done 
• Can run fit with MP (smeared MCHits) , using Run 3 geometry (XML DetDes

• A lot of progress to having track fit working with DD4HEP
• But not quite there yet

• Merged into U2 branches by Tim Evans
• More studies and help/effort needed 



What needs to be done?
• Situation is very similar to 2008 – 2010 when we had to verify the geometry of 

the first LHCb
• Then what happened (driven by subdetector experts)

• Eyeballing – checking that the numbers for all materials used made sense
• Radiation scans – do they agree with expectations from analytic calculations/standalone
• Weighting the detector, does the weight in the simulation of detector elements agree 

with physical expectation
• After a lot of work and iteration we were sure of the numbers in XmlDDDB , 

sure detector in simulation matched reality at % level
• Similar program needs to be launched now
• From other side debugging from track reconstruction



Backup



Parameterised scatters: DD4HEP vs DetDesc

*comparison of energy loss 
wrt DetDesc

● Scattering corrections can be parametrised for transitions, e.g. from VP hit to next VP hit and so on
● Helps to locate the differences in materials

energy loss in MeV


