

FSP LHCb Erforschung von Universum und Materie

Mighty Tracker – Tracking and Scoping

- <u>Lennart H. Uecker</u>, Christoph Langenbruch, André Günther
 - Physikalisches Institut, Uni Heidelberg
 - 07.03.2024
 - LHCb Upgrade II Tracking Workshop

I. Scoping: Fibre tracking at high luminosity.

II. Mighty Tracker: The pixel part.

III. Mighty Tracker: Making and fitting long tracks.

Lennart H. Uecker

Table of contents

I: Scoping - fibre tracking with high luminosity

- Smaller & less expensive pixel detector \rightarrow fibre tracker needs to cover larger area. • High occupancy fibre tracking may limit scoping options.
- Use the Run 3 simulation @ UII luminosity \rightarrow fibre tracking performance.
- Tracking in the fibres only.
- Currently not accounting for:
 - Differences to a future fibre tracker.
 - Differences in material budget (e.g. support for pixel).
 - Changes to the other detectors.

- Pipeline: Gauss \rightarrow Boole \rightarrow Moore.
- Gauss:
 - Generate Bs $\rightarrow J/\Psi \phi$ events.
 - Use Run 3 detector geometry.
- Boole:
 - Remove FT hits in the MCFTDepositCreator.
 - Consideration of spillover.
- Moore:
 - PrChecker \rightarrow tracking efficiencies and ghost rates with MCTruth.
 - Correct consideration of removed Tracks/hits in the FT.
 - Removed Global Event Cut.

Methodology

• 4 configurations of cut fibres.

• Different luminosities:
-
$$1.5 \cdot 10^{34} \frac{1}{\text{cm}^2 \text{s}}$$

- $1.3 \cdot 10^{34} \frac{1}{\text{cm}^2 \text{s}}$
- $1.0 \cdot 10^{34} \frac{1}{\text{cm}^2 \text{s}}$
- Run 3 $0.2 \cdot 10^{34} \frac{1}{\text{cm}^2 \text{s}}$

Areas of pixel detectors per layer:

- $0.6 m^2$ • Inner
- Low $1.3 m^2$
- Medium $2.1 m^2$
- $3.0 m^2$ • FTDR

- Looking at LiteCluster \rightarrow proxy occupancy
- Overall occupancy will look similar to highest in Run 3.

Name	V	μ
1.5e34	58.0	40.6
1.3e34	50.3	35.2
1.0e34	38.8	27.1
Run 3 2.0e33	8.2	5.6

Occupancy

Lite clusters per pseudo channel, 1.5 · 10³⁴ cm⁻²s⁻¹

Fibre tracking efficiencies & ghost rates

- Here for **BestLong** tracks, i.e. best from Matching and Forward + Kalmanfilter.
- We observe efficiencies over 90% for medium and low, ghost rates ~ 30% at 1.5e34. -With $\sim 10\%$ ghost rate coming from upstream tracking.

• Tracking efficiencies high momentum track in FT for different scoping scenarios and luminosities.

Dropping a fibre layer

- Dropping a FT layer was identified as scoping option.
- Large drop in efficiency.
- Tuned the Hybrid-Seeding for less hits.
- Still very large inefficiency \rightarrow disfavoured.

Effect of spillover

- Effect of spillover, in **run3 configuration**, on the efficiencies.
- Spillover cannot just be assumed to apply to U2.
- Up to 2% inefficiency for Low.

- scoping setups.
- Factors not considered here are:
 - Radiation hardness.
 - Differences to an upgraded fibre tracker.
 - Changed position of mirror for reflected photons.

Conclusions for fibre tracker

• The fibre tracker seems to have robust tracking efficiency for higher luminosities in several

- Use MC FTHits in the pixel area \rightarrow removed from FT.
- Simplified digitisation with MP resolution.
- Fake LHCbIDs for PrChecker.
- Standalone pixel tracking.
- Consistent with expectations:
 - High efficiency with low ghost rates:

**** MPSeed		79503	tracks	includi	ng
01_hasMP	•	52818	from	81448	[64
02_long	•	46238	from	50667	[91
03_long_P>5GeV	•	41616	from	42950	[96
04_long_fromB	•	537	from	557	[96
05_long_fromB_P>5GeV	•	514	from	521	[98
	<pre>*** MPSeed 01_hasMP 02_long 03_long_P>5GeV 04_long_fromB 05_long_fromB_P>5GeV</pre>	<pre>**** MPSeed 01_hasMP : 02_long : 03_long_P>5GeV : 04_long_fromB : 05_long_fromB_P>5GeV : </pre>	<pre>**** MPSeed 79503 01_hasMP : 52818 02_long : 46238 03_long_P>5GeV : 41616 04_long_fromB : 537 05_long_fromB_P>5GeV : 514</pre>	<pre>*** MPSeed 79503 tracks 01_hasMP : 52818 from 02_long : 46238 from 03_long_P>5GeV : 41616 from 04_long_fromB : 537 from 05_long_fromB_P>5GeV : 514 from</pre>	<pre>**** MPSeed 79503 tracks includi 01_hasMP : 52818 from 81448 02_long : 46238 from 50667 03_long_P>5GeV : 41616 from 42950 04_long_fromB : 537 from 557 05_long_fromB_P>5GeV : 514 from 521</pre>

- Uniform distribution of hit inefficiency.
- Shown here: at $1.5 \times 10^{34} \,\mathrm{cm}^{-2} \mathrm{s}^{-1}$ with FTDR size.
- Ghost rate ~ 0.1 %
- Optimised for tracks coming from IP.
- Implemented pixel tracking algorithm optimised for 100% hit efficiency.

Hit efficiency

• Change in spacing between pixel layers:

closer Layers	40736	tracks	includi	ng		168
01_hasMP	26482	from	41926	[6	53.16	%]
02_long	23390	from	26023	[8	39.88	%]
03_long_P>5GeV	20901	from	22048	[5	94.80	%]
04_long_fromB	256	from	277	[9	92.42	%]
05_long_fromB_P>5GeV	245	from	256	[{	95.70	%]

evenly spaced	40900 tracks	including	48
01_hasMP	27166 from	41926 [64.80	%]
02_long	23701 from	26023 [91.08	%]
03_long_P>5GeV	21354 from	22048 [96.85	%]
04_long_fromB	268 from	277 [96.75	%]
05_long_fromB_P>5GeV	254 from	256 [99.22	%]

- Slight loss in tracking efficiency and increase in ghost rate.
- Could possibly be compensated.

Use MatchNN to make long tracks.

Lennart H. Uecker

Retraining MatchNN

• Can retrain the Matching NN:	Rur
	01_
- A first try was not as successful as hoped	02_
- Can ontimise further	03_
	04_
	05_
	05_
• Variables used in NN:	06_
- 1.0	06_
- cn12	Ret
-teta2	01_
	02_
- distX	03_
	04_
aist r	05_
- dslope	05_
astopo	06_
- dSlopeY	06_

n 3 NN	12711 tra	icks	including		5262	ghosts [41.40
long			•	6539	from	7545 [86.67
_long_P>5GeV			•	6046	from	6642 [91.03
_long_strange			•	262	from	343 [76.38
_long_strange_P>5Ge	eV		•	226	from	269 [84.01
_long_fromB			•	116	from	122 [95.08
_long_fromD			•	121	from	131 [92.37
_long_fromB_P>5GeV			•	113	from	115 [98.26
_long_fromD_P>5GeV			•	115	from	117 [98.29
trained NN 1	12381 trac	ks :	including		4864	ghosts [39.29
trained NN 1 _long	12381 trac	ks i	including :	6577	4864 from	ghosts [39.29 7545 [87.17
trained NN 1 _long _long_P>5GeV	12381 trac	ks :	including : :	6577 6080	4864 from from	ghosts [39.29 7545 [87.17 6642 [91.54
trained NN 1 _long _long_P>5GeV _long_strange	12381 trac	ks :	including : : :	6577 6080 262	4864 from from from	ghosts [39.29 7545 [87.17 6642 [91.54 343 [76.38
trained NN 1 _long _long_P>5GeV _long_strange _long_strange_P>5Ge	12381 trac	ks :	including : : : :	6577 6080 262 227	4864 from from from from	ghosts [39.29 7545 [87.17 6642 [91.54 343 [76.38 269 [84.39
trained NN 1 _long _long_P>5GeV _long_strange _long_strange_P>5Ge _long_fromB	12381 trac	ks :	including : : : :	6577 6080 262 227 116	4864 from from from from	ghosts [39.29 7545 [87.17 6642 [91.54 343 [76.38 269 [84.39 122 [95.08
trained NN 1 _long _long_P>5GeV _long_strange _long_strange_P>5Ge _long_fromB _long_fromD	12381 trac	ks :	including : : : : :	6577 6080 262 227 116 121	4864 from from from from from	ghosts [39.29 7545 [87.17 6642 [91.54 343 [76.38 269 [84.39 122 [95.08 131 [92.37
trained NN _long _long_P>5GeV _long_strange _long_strange_P>5Ge _long_fromB _long_fromD _long_fromB_P>5GeV	12381 trac	ks :	including : : : : : :	6577 6080 262 227 116 121 113	4864 from from from from from from	ghosts [39.29 7545 [87.17 6642 [91.54 343 [76.38 269 [84.39 122 [95.08 131 [92.37 115 [98.26

%] %] %] %] %] %] %] %] %] %] %] %] %] %] %] %] %] %]

Lennart H. Uecker

- Studied fibre tracking performance for several descoping scenarios.
- Flexible approach using Run 3 simulation @ UII luminosity. - profiting from available tools & algorithms.
- Added pixel tracking for MP area showing high efficiency & low ghost rate.
- Obtained fitted long tracks with momentum resolutions.

Conclusion

Backup

