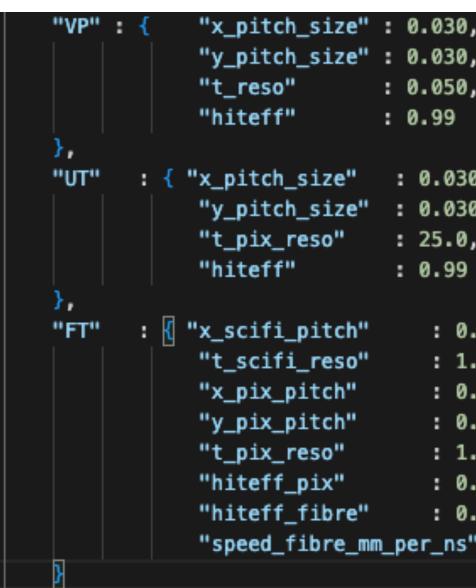


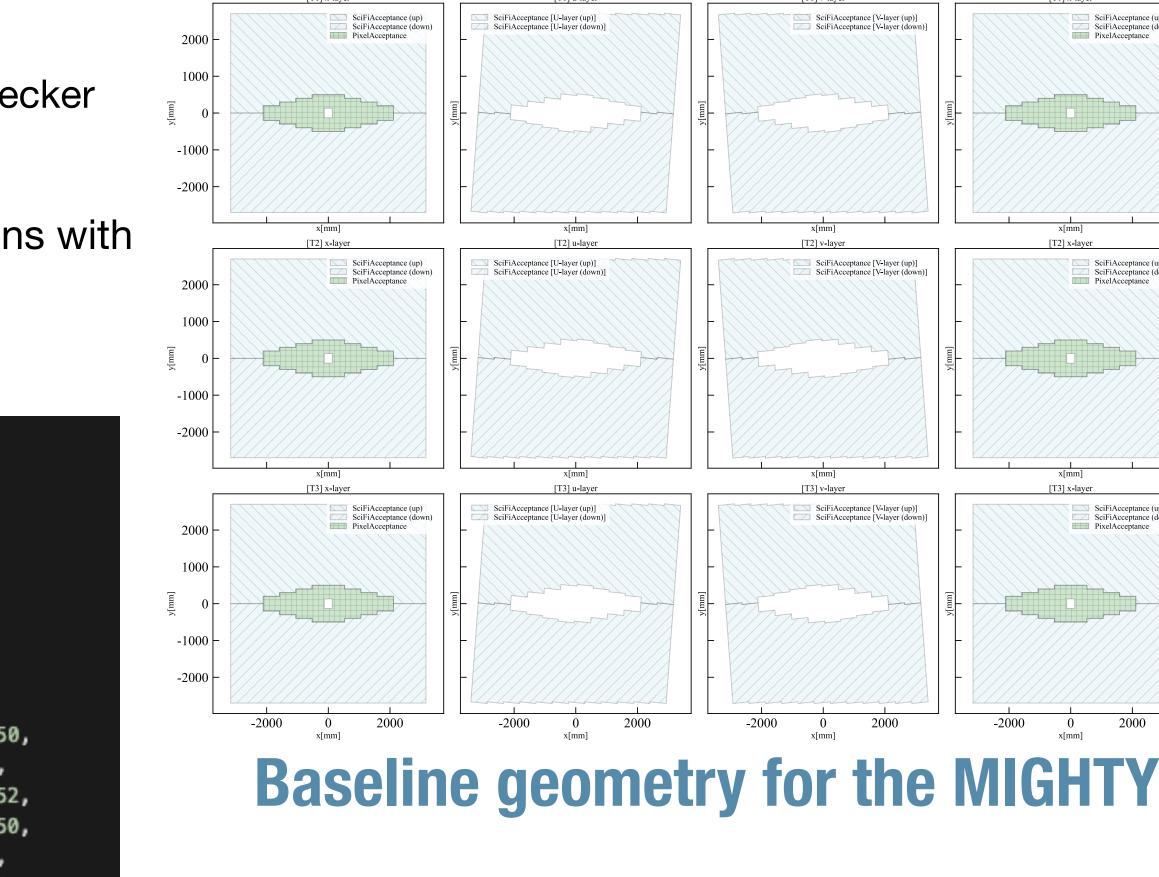
STATUS OF U2UT BASED ALGORITHMS

Benjamin Audurier for the U2UT group- LHCb Upgrade II Tracking Workshop/Evian March 7th 2024

INTRODUCTION FIRST RESULTS FOR VELO-UT AND MATCHING OUTLOOKS

General Introduction


- * The early results presented in the following slides are coming from:
 - The <u>Pr python</u> (a.k.a Renato's python framework)
 - Early MC studies made within our working package.
- * Other results can be found in Xuhao's presentation earlier today.
- * **Short term goal**: developed/tune the new algorithms based on the new U2UT pixel design.
 - presentation for more details).
 - Later, these algorithms will be integrated to the U2 proto-framework.
- * Results are all **work-in-progress** and includes:
 - Standalone UT algorithms with different U2UT scoping geometries (see Carlos' presentation next).
 - Matching-based UT algorithms (with VeloTrack and MTTrack).


Quick performance results to test the various scoping scenarios with the different U2UT geometry (see Xuhao's

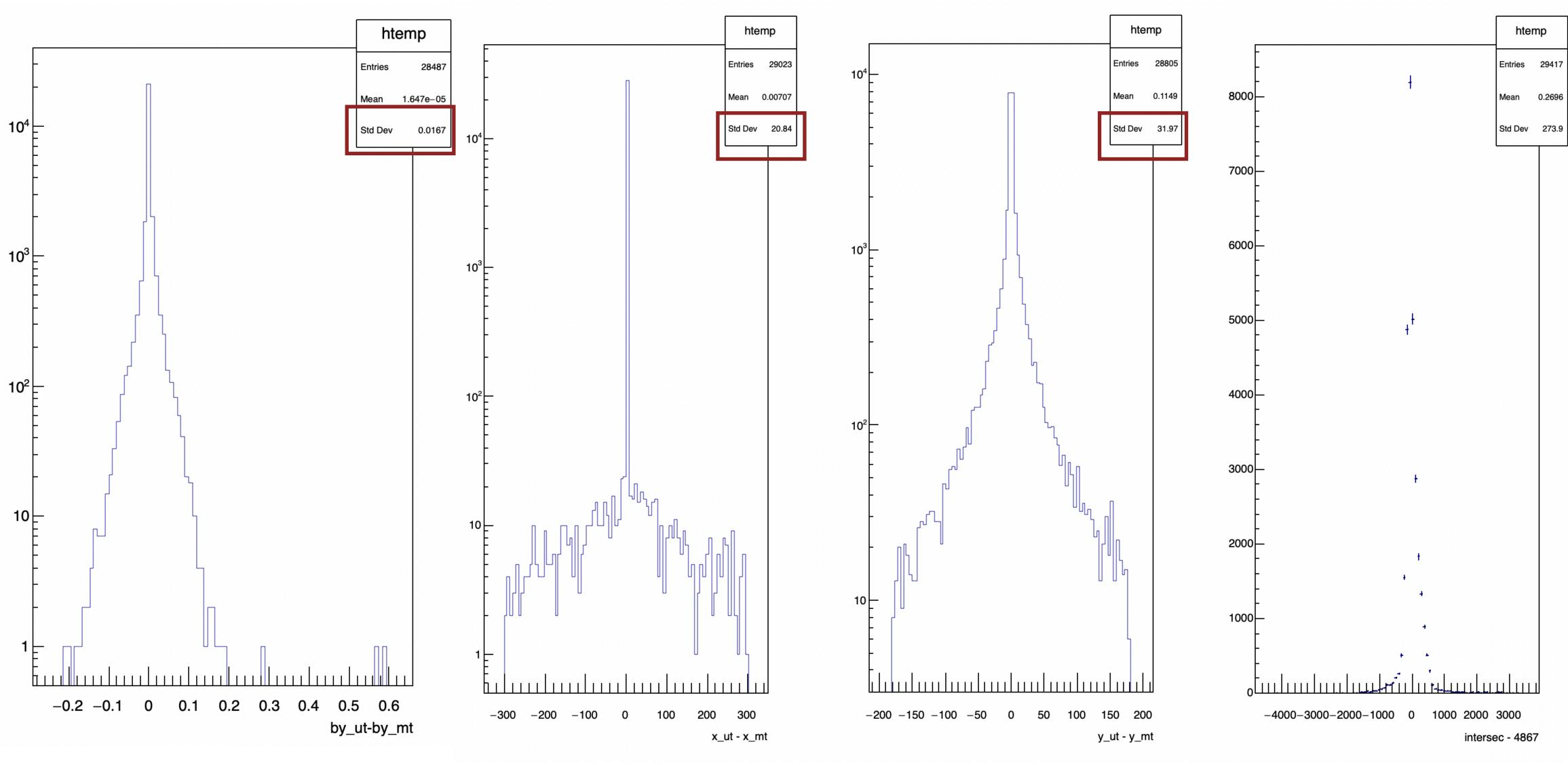
First results with the Pr_python framework

- * General strategy of the Pr_python framework:
 - Take MCHits from gauss-on-gaussino simulation.
 - Emulated digitization via a (tunable) smearing strategy.
 - Run the algorithms and compute the efficiency/ghost rate with a PrChecker tool similar to the one in the LHCb framework.
- Simulations use Run 3 geometry with minimum bias pp@13TeV collisions with $\mathscr{L}_{inst} = 1.3 * 10^{34} cm^{-2} s^{-1}$
 - 16 MCEvents (i.e bunch crossing) are used.
- Configuration for this presentation:

Smearing parameters

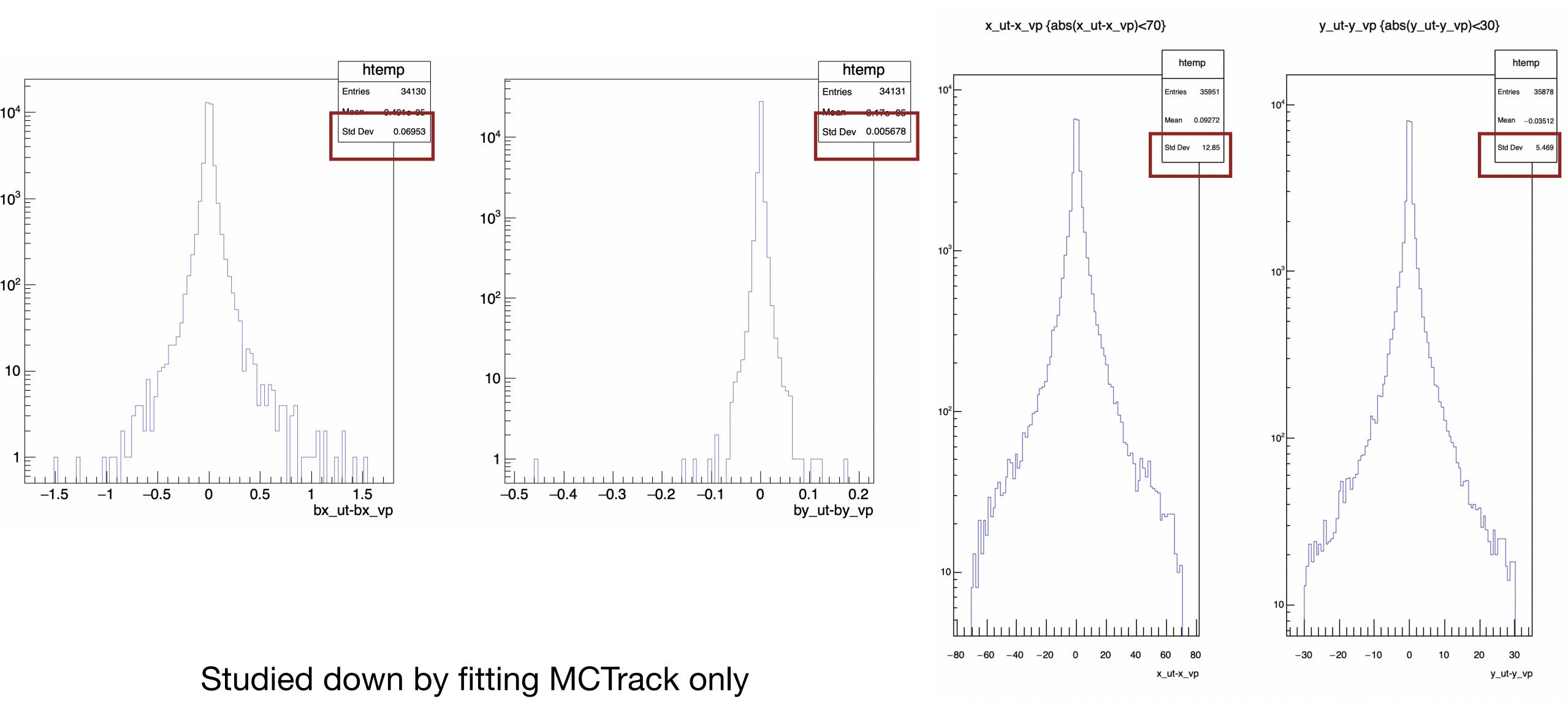
ze"	: 0.030,
	: 0.050,
	: 0.99
e"	: 0.030,
ze"	: 0.030,
	: 25.0,
	: 0.99
ch"	: 0.250,
so"	: 1.2,
h"	: 0.052,
h"	: 0.150,
	: 1.2,
	: 0.96,
re"	: 0.98,
e_mm	_per_ns" : 150

Velo-UT/UT-MT strategy

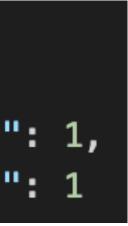

- Same strategy used for the two algorithms:
 - * « cheated » algorithms are used for both the VeloTracks and UTTracks:
 - i.e. tracks are reconstructed with hits belonging to the same MCTrack.
 - Fit model is a straight line for Velo (x and y component) and a pol2 (pol1) for the UT x-component (y-component).
 - Inefficiency comes from fit instability and a χ^2 /ndof cut at 100.
 - TTracks: realistic algorithms written by Renato, fitting the x-component (y-component) with a pol2 (poll). *
 - * Velo-UT (UT-MT) tracks are extrapolated to the point of convergence

* The value
$$\chi^2 = \frac{(x_{up} - x_{down})^2}{\sigma_x} + \frac{(y_{up} - y_{down})^2}{\sigma_y} + \frac{(by_{up} - by_{down})^2}{\sigma_{by}} (+ \frac{(bx_{up} - bx_{down})^2}{\sigma_{bx}})$$

- Last bit is for VELO-UT only
- * Track combination with the lowest χ^2 is kept for the matching.



MT-UT - extrapolation constraints


Studied down by fitting MCTrack only

VeloUT - extrapolation constraints

« Tracklets » reference

	Velo Tracks PrChecker		ĺ	TTracks Tracks PrCheck	ker	i
Category	# Recoed / # Recoble Efficiency (%) Clones (%)	Category	# Recoed / # Recoble	Efficiency (%)	Clones (%)
<pre>HasVelo (all) (!e) HasVelo (all) HasVelo (all), eta>0 HasVelo (all), eta[2,5] HasVelo (all), eta[2,5], p > 5 GeV Long eta[2,5] Long eta[2,5], p>5GeV LongUT (all) LongUT eta[2,5], p>5GeV (!e) Long (Pix-Pix) (!e) Long (Pix-Pix), eta[2,5], p>5GeV (!e) LongUT (Pix-Pix), eta[2,5], p>5GeV HasVeloUT (all) (!e) HasVeloUT (all) HasVeloUT (all), eta[2,5], p > 5 GeV</pre>	$ \begin{bmatrix} 27505 & / & 30139 & 91.26 & \\ 25407 & / & 26268 & 96.72 & \\ 16847 & / & 18956 & 88.87 & \\ 10658 & / & 11183 & 95.31 & \\ 12343 & / & 13938 & 88.56 & \\ 6091 & / & 6139 & 99.22 & \\ 6897 & / & 6994 & 98.61 & \\ 4382 & / & 4419 & 99.16 & \\ 6958 & / & 7055 & 98.63 & \\ 6795 & / & 6891 & 98.61 & \\ 4299 & / & 4335 & 99.17 & \\ 3913 & / & 3956 & 98.91 & \\ 3522 & / & 3565 & 98.79 & \\ 2992 & / & 3016 & 99.20 & \\ 3460 & / & 3502 & 98.80 & \\ 3435 & / & 3477 & 98.79 & \\ 2915 & / & 2938 & 99.22 & \\ 11504 & / & 12648 & 90.96 & \\ 10224 & / & 10683 & 95.70 & \\ 10839 & / & 11939 & 90.79 & \\ 5323 & / & 5365 & 99.22 & \\ 5323 & / & 5365 & 99.22 & \\ \end{bmatrix} $	<pre>0 (0.00 %) [nTotMatch = 27505]) 0 (0.00 %) [nTotMatch = 25407]) 0 (0.00 %) [nTotMatch = 16847]) 0 (0.00 %) [nTotMatch = 10658]) 0 (0.00 %) [nTotMatch = 12343]) 0 (0.00 %) [nTotMatch = 6091]) 0 (0.00 %) [nTotMatch = 6897]) 0 (0.00 %) [nTotMatch = 6897]) 0 (0.00 %) [nTotMatch = 4382]) 0 (0.00 %) [nTotMatch = 4382]) 0 (0.00 %) [nTotMatch = 5958]) 0 (0.00 %) [nTotMatch = 3913]) 0 (0.00 %) [nTotMatch = 3913]) 0 (0.00 %) [nTotMatch = 3522]) 0 (0.00 %) [nTotMatch = 3435]) 0 (0.00 %) [nTotMatch = 3435]) 0 (0.00 %) [nTotMatch = 11504]) 0 (0.00 %) [nTotMatch = 10224]) 0 (0.00 %) [nTotMatch = 10839]) 0 (0.00 %) [nTotMatch = 5323])</pre>	<pre>HasMT (all) HasMT (pix-pix) HasMT (fib-fib) HasMT (pix-fib) Down (all) Down Exclusive (all) Long eta[2,5] Long eta[2,5], p>5GeV LongUT (all) LongUT eta[2,5], p>5GeV (!e) Long eta[2,5], p>5GeV (!e) Long eta[2,5], p>5GeV (!e) Long (Pix-Pix) (!e) Long (Pix-Pix), eta[2,5] (!e) Long (Pix-Pix), eta[2,5], p>5GeV (!e) Long (Fib-Fib) (!e) Long (Fib-Fib), eta[2,5], p>5GeV (!e) Long (Fib-Fib), eta[2,5], p>5GeV (!e) Long (Fib-Fib), eta[2,5], p>5GeV (!e) Long (Fib-Fib), eta[2,5], p>5GeV (!e) Long (Pix-Fib), eta[2,5], p>5GeV</pre>	9282 / 17786 5753 / 9803 3483 / 5435 46 / 2554 6917 / 8901 1207 / 1846 6196 / 7643 5695 / 6994 3967 / 4419 5710 / 7055 5606 / 6891 3890 / 4335 5391 / 6540 3763 / 4165 3673 / 3956 326 / 3565 2932 / 3016 2175 / 2579 2048 / 2374 822 / 890 17 / 615 17 / 601 9 / 259	52.19 % 58.69 % 64.08 % 1.80 % 77.71 % 65.38 % 81.07 % 81.43 % 89.77 % 80.94 % 81.35 % 89.73 % 90.35 % 92.85 % 93.30 % 97.21 % 84.34 % 86.27 % 92.36 % 2.76 % 2.83 % 3.47 %	<pre>4 (0.04 %) [nTotMatch = 9284]) 2 (0.03 %) [nTotMatch = 5754]) 2 (0.06 %) [nTotMatch = 3484]) 0 (0.00 %) [nTotMatch = 46]) 0 (0.00 %) [nTotMatch = 6917]) 0 (0.00 %) [nTotMatch = 6196]) 0 (0.00 %) [nTotMatch = 6196]) 0 (0.00 %) [nTotMatch = 5695]) 0 (0.00 %) [nTotMatch = 3967]) 0 (0.00 %) [nTotMatch = 3967]) 0 (0.00 %) [nTotMatch = 5606]) 0 (0.00 %) [nTotMatch = 5606]) 0 (0.00 %) [nTotMatch = 3763]) 0 (0.00 %) [nTotMatch = 3763]) 0 (0.00 %) [nTotMatch = 3763]) 0 (0.00 %) [nTotMatch = 3673]) 0 (0.00 %) [nTotMatch = 2932]) 0 (0.00 %) [nTotMatch = 2048]) 0 (0.00 %) [nTotMatch = 17])</pre>
+ 	UT Tracks PrChecker	+ 	<pre>[(!e) LongUT eta[2,5] [(!e) LongUT eta[2,5], p>5GeV</pre>	5306 / 6442 3690 / 4086	82.37 % 90.31 %	0 (0.00 %) [nTotMatch = 5306]) 0 (0.00 %) [nTotMatch = 3690])
<pre>Category HasVelo (all) (!e) HasVelo (all) HasVelo (all), eta>0 HasVelo (all), eta<0 HasVelo (all), eta[2,5] HasVelo (all), eta[2,5], p > 5 GeV HasUT (all) (!e) HasUT (all) HasUT (all), eta[2,5]</pre>	<pre># Recoed / # Recoble Efficiend 10849 / 30139 36.00 9811 / 26268 37.35 10849 / 18956 57.23 0 / 11183 0.00 10434 / 13938 74.86 5342 / 6139 87.02 15397 / 26244 58.67 12218 / 14366 85.05 14191 / 20971 67.67</pre>	% 0 (0.00 %) [nTotMatch = 10849]) % 0 (0.00 %) [nTotMatch = 9811]) % 0 (0.00 %) [nTotMatch = 10849]) % 0 (0.00 %) [nTotMatch = 10849]) % 0 (0.00 %) [nTotMatch = 10434]) % 0 (0.00 %) [nTotMatch = 5342]) % 0 (0.00 %) [nTotMatch = 15397]) % 0 (0.00 %) [nTotMatch = 12218]) % 0 (0.00 %) [nTotMatch = 14191])	<pre>(!e) LongUT (Pix-Pix) (!e) LongUT (Pix-Pix), eta[2,5] (!e) LongUT (Pix-Pix), eta[2,5], p>5GeV (!e) LongUT (Fib-Fib) (!e) LongUT (Fib-Fib), eta[2,5] (!e) LongUT (Fib-Fib), eta[2,5], p>5GeV (!e) LongUT (Pix-Fib) (!e) LongUT (Pix-Fib), eta[2,5] (!e) LongUT (Pix-Fib), eta[2,5], p>5GeV Decay Down_Exclusive_tight eta[2,5], p>5GeV</pre>	3258 / 3502 3245 / 3477 2859 / 2938 2134 / 2496 2044 / 2365 822 / 889 17 / 606 9 / 259 188 / 220 3737 / 4139	93.03 % 93.33 % 97.31 % 85.50 % 86.43 % 92.46 % 2.81 % 2.83 % 3.47 % 85.45 % 90.29 %	<pre>0 (0.00 %) [nTotMatch = 3258]) 0 (0.00 %) [nTotMatch = 3245]) 0 (0.00 %) [nTotMatch = 2859]) 0 (0.00 %) [nTotMatch = 2134]) 0 (0.00 %) [nTotMatch = 2044]) 0 (0.00 %) [nTotMatch = 822]) 0 (0.00 %) [nTotMatch = 17]) 0 (0.00 %) [nTotMatch = 3737]) 0 (0.00 %) [nTotMatch = 3737]) </pre>
<pre>HasUT (all), eta[2,5], p > 5 GeV HasVeloUT (all) (!e) HasVeloUT (all) HasVeloUT (all), eta[2,5] HasVeloUT (all), eta[2,5], p > 5 GeV Long (all) Long eta[2,5] Long eta[2,5], p>5GeV LongUT (all)</pre>	6196 / 6242 99.26 10849 / 12648 85.78 9811 / 10683 91.84 10434 / 11939 87.39 5342 / 5365 99.57 6995 / 7643 91.52 6844 / 6994 97.86 4328 / 4419 97.94 6995 / 7055 99.15	% 0 (0.00 %) [nTotMatch = 10849]) % 0 (0.00 %) [nTotMatch = 9811]) % 0 (0.00 %) [nTotMatch = 10434]) % 0 (0.00 %) [nTotMatch = 10434]) % 0 (0.00 %) [nTotMatch = 6844]) % 0 (0.00 %) [nTotMatch = 6844]) % 0 (0.00 %) [nTotMatch = 4328])	 These numbers are Deconstructible are 			
LongUT eta[2,5] LongUT eta[2,5], p>5GeV (!e) Long (Pix-Pix) (!e) Long (Pix-Pix), eta[2,5] (!e) Long (Pix-Pix), eta[2,5], p>5GeV (!e) LongUT (Pix-Pix), eta[2,5] (!e) LongUT (Pix-Pix), eta[2,5], p>5GeV Decay Down_Exclusive_tight eta[2,5], p> Decay Down_tight eta[2,5], p>5GeV	6844 / 6891 99.32 4328 / 4335 99.84 3497 / 3956 88.40 3472 / 3565 97.39 2936 / 3016 97.35 3497 / 3502 99.86 3472 / 3477 99.86 2936 / 2938 99.93	% 0 (0.00 %) [nTotMatch = 6844]) % 0 (0.00 %) [nTotMatch = 4328]) % 0 (0.00 %) [nTotMatch = 3497]) % 0 (0.00 %) [nTotMatch = 3472]) % 0 (0.00 %) [nTotMatch = 2936]) % 0 (0.00 %) [nTotMatch = 3497]) % 0 (0.00 %) [nTotMatch = 3497]) % 0 (0.00 %) [nTotMatch = 3497]) % 0 (0.00 %) [nTotMatch = 3497]) % 0 (0.00 %) [nTotMatch = 3497]) % 0 (0.00 %) [nTotMatch = 2936]) % 0 (0.00 %) [nTotMatch = 2936])	* Reconstructible cr	"ha "ha		: 3, : 3, StationMin": 1, StationMin": 1

Velo-UT/UT-MT matching - results

- Results from <u>Velo-UT matching</u>:
 - 78% efficiency for tracks flag « HasVeloUT ».
- Results from <u>UT-MT matching</u>:
 - 79% efficiency for the « decay » category (i.e. long lived particle).
- * High ghost rate for both algorithms:
 - To be studied.

<u>Category</u>	# Recoed / # Recoble	Efficiency (%)	Clones (%)		
<pre>HasVelo (all) (!e) HasVelo (all) HasVelo (all), eta>0 HasVelo (all), eta<0 HasVelo (all), eta[2,5] HasVelo (all), eta[2,5], p > 5 GeV HasUT (all) (!e) HasUT (all) HasUT (all), eta[2,5] HasUT (all), eta[2,5]</pre>	6479 / 30139 6306 / 26268 6479 / 18956 0 / 11183 6189 / 13938 4168 / 6139 6479 / 26244 6306 / 14366 6189 / 20971	21.50 % 24.01 % 34.18 % 0.00 % 44.40 % 67.89 % 24.69 % 43.90 % 29.51 %	$ \begin{bmatrix} 0 & (0.00 \ \%) & [& nTotMatch = 6479 \]) \\ 0 & (0.00 \ \%) & [& nTotMatch = 6306 \]) \\ 0 & (0.00 \ \%) & [& nTotMatch = 6479 \]) \\ & & nan \\ 0 & (0.00 \ \%) & [& nTotMatch = 6189 \]) \\ 0 & (0.00 \ \%) & [& nTotMatch = 4168 \]) \\ 0 & (0.00 \ \%) & [& nTotMatch = 6479 \]) \\ 0 & (0.00 \ \%) & [& nTotMatch = 6479 \]) \\ 0 & (0.00 \ \%) & [& nTotMatch = 6306 \]) \\ 0 & (0.00 \ \%) & [& nTotMatch = 6189 \]] \\ 0 & (0.00 \ \%) & [& nTotMatch = 6189 \]] \\ 0 & (0.00 \ \%) & [& nTotMatch = 6189 \]] \\ 0 & (0.00 \ \%) & [& nTotMatch = 6189 \]] \\ 0 & (0.00 \ \%) & [& nTotMatch = 6180 \] \\ 0 & (0.00 \ \%) & [& nTotMatch = 6180 \] \\ 0 & (0.00 \$		
HasVeloUT (all) (!e) HasVeloUT (all) HasVeloUT (all), eta[2,5] HasVeloUT (all), eta[2,5], p > 5 GeV	6479 / 12648 6306 / 10683 6189 / 11939 4168 / 5365	51.23 % 59.03 % 51.84 % 77.69 %	0 (0.00 %) [nTotMatch = 6479]) 0 (0.00 %) [nTotMatch = 6306]) 0 (0.00 %) [nTotMatch = 6189]) 0 (0.00 %) [nTotMatch = 4168])		
<pre>(!e) LongUT eta[2,5] (!e) LongUT eta[2,5], p>5GeV (!e) LongUT (Pix-Pix), eta[2,5] (!e) LongUT (Pix-Pix), eta[2,5], p>5GeV (!e) LongUT (Fib-Fib) (!e) LongUT (Fib-Fib), eta[2,5] (!e) LongUT (Fib-Fib), eta[2,5], p>5GeV (!e) LongUT (Pix-Fib), eta[2,5] (!e) LongUT (Pix-Fib), eta[2,5] (!e) LongUT (Pix-Fib), eta[2,5]</pre>	4437 0442 3245 4086 2389 3502 2378 3477 2200 2938 1879 2496 1771 2365 834 889 314 606 308 600 211 259	09.19 % 79.42 % 68.22 % 68.39 % 74.88 % 75.28 % 93.81 % 51.82 % 51.33 % 81.47 %	<pre>0 (0.00 %) [nTotMatch = 4437]) 0 (0.00 %) [nTotMatch = 3245]) 0 (0.00 %) [nTotMatch = 2389]) 0 (0.00 %) [nTotMatch = 2378]) 0 (0.00 %) [nTotMatch = 2200]) 0 (0.00 %) [nTotMatch = 1879]) 0 (0.00 %) [nTotMatch = 1771]) 0 (0.00 %) [nTotMatch = 314]) 0 (0.00 %) [nTotMatch = 308]) 0 (0.00 %) [nTotMatch = 211])</pre>		
 # Events 16 +	 # Recoed Tracks 24866	 # Fake Tracks 18387	Ghost Rate 73.94 % 		

+DownTracks Tracks PrChecker				
Category	# Recoed / # Recoble	Efficiency (%)	Clones (%)	
Long (all) Long eta[2,5] Long eta[2,5], p>5GeV LongUT (all) LongUT eta[2,5] LongUT eta[2,5]	4174 / 7643 4103 / 6994 3323 / 4419 4174 / 7055 4103 / 6891 3323 / 1335	54.61 % 58.66 % 75.20 % 59.16 % 59.54 % 76.66 %	<pre> 0 (0.00 %) [nTotMatch = 4174]) 0 (0.00 %) [nTotMatch = 4103]) 0 (0.00 %) [nTotMatch = 3323]) 0 (0.00 %) [nTotMatch = 4174]) 0 (0.00 %) [nTotMatch = 4103]) 0 (0.00 %) [nTotMatch = 2323])</pre>	
Down_loose (all) Down_loose eta[2,5] Down_loose eta[2,5], p>5GeV Down_tight (all) Down_tight eta[2,5] Down_tight eta[2,5], p>5GeV Decay Down_Exclusive_tight eta[2,5], p>5GeV Decay Down_tight eta[2,5], p>5GeV	4923 9181 4821 8894 3778 5280 4921 8901 4819 8617 3777 5052 171 220 3246 4139	53.62 % 54.21 % 55.29 % 55.92 % 74.76 % 77.73 % 78.42 %	<pre>0 (0.00 %) [nTotMatch = 4923]) 0 (0.00 %) [nTotMatch = 4821]) 0 (0.00 %) [nTotMatch = 3778]) 0 (0.00 %) [nTotMatch = 4921]) 0 (0.00 %) [nTotMatch = 4819]) 0 (0.00 %) [nTotMatch = 3777]) 0 (0.00 %) [nTotMatch = 171]) 0 (0.00 %) [nTotMatch = 3246])</pre>	
<pre>(!e) LongUT (Pix-Pix) (!e) LongUT (Pix-Pix), eta[2,5] (!e) LongUT (Pix-Pix), eta[2,5], p>5GeV (!e) LongUT (Fib-Fib) (!e) LongUT (Fib-Fib), eta[2,5] (!e) LongUT (Fib-Fib), eta[2,5], p>5GeV</pre>	2671 / 3302 2671 / 3477 2444 / 2938 1349 / 2496 1284 / 2365 755 / 889	76.44 % 76.82 % 83.19 % 54.05 % 54.29 % 84.93 %	0 (0.00 %) [nTotMatch = 2077]) 0 (0.00 %) [nTotMatch = 2671]) 0 (0.00 %) [nTotMatch = 2444]) 0 (0.00 %) [nTotMatch = 1349]) 0 (0.00 %) [nTotMatch = 1284]) 0 (0.00 %) [nTotMatch = 755])	
# Events 16 +	# Recoed Tracks 13504	# Fake Tracks 8578	Ghost Rate 63.52 %	

Outlooks

- * Points to take home:
 - **First running algorithms** for Velo-UT/UT-MT matching in Pr_python framework.
 - Good efficiency found for both algorithms (efficiency \sim 79%). *
 - Significant Ghost Rate (> 60%) to be investigated. *

* Next steps:

- Complete the « UT matching » algorithm family with the LongTrack in Pr_python.
 - Compare with the early results with the « cheated » results shown before. *
- Complete the performance studies for the various scoping scenarios.
 - Improve the algorithms (use realistic ones, better fit strategy? using momentum resolution ?). *
 - Mixe MT and UT geometry.
 - Adding PbPb studies. *
- Finalize the number with Run 5 simulations.

Ideas and suggestions are welcomed

	VELO	UT	MT	VELO-UT
HasVeloUT (all), eta[2,5], p > 5 GeV	99 %	99 %	_	78 %
Decay Down_tight eta[2,5], p>5GeV	-	99 %	90 %	—

