U2 Downstream tracking studies

Arthur Hennequin – arthur.hennequin@cern.ch

March 7th, 2024

U2 Downstream tracking studies

Objectives

Evaluate what impact a pixel UT would have on downstream tracking:

- What pixel size ?
- How many layers ?
- Layer placement.
- Ghost rates ? Efficiencies ?
- Data structures ?

Setup and Sample

Stack starting point (initiated by Tim Evans):

- Gaudi: v38r0
- Detector: run5-tmp
- LHCb: run5
- Rec: run5
- Moore: run5
- Lbcom: master

Sample:

 Boole-test-FTDRCutOff-Extended.digi - minbias, produced by Mark Whitehead and Renato Quagliani

MT seeding

In run3, seeds are comming only from the SciFi. They are reconstructed using the HybridSeeding algorithm.

In run5, the seeds will come from different combination of pixels and fibres detectors in the MT and will be reconstructed using 3 algorithms:

- Pix-Pix (contributes ~150 downstream tracks / event)
- Fib-Fib (contributes ~170 downstream tracks / event)
- Pix-Fib (contributes ~50 downstream tracks / event)

The seeds will then be merged into a single track container and given as input to the downstream tracking.

Fake MT seeding

The algorithms for MT reconstruction are currently under development. It is therefore interesting to have a "cheated" version that uses MC informations to create seed tracks.

The FakeTrackingMT creates tracks from MCParticles if:

 $\#_{hits} \ge 4 \lor (2 \times \#_{pixels} + \#_{fibres}) > 10$

The created tracks can contain either or both pixels and fibres hits.

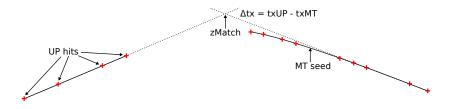
MT Seeding (cheated)

**** MTSeed		7532 tracks	including	0 ghosts [0.00 %]. Event average 0.00 % ****
01 hasT		3733 from	4251 [87.81 %]	1 clones [0.03 %], purity: 99.99 %, hitEff: 99.98 %
02 long	1	2672 from	4265 [62.65 %]	0 clones [0.00 %], purity:100.00 %, hitEff:100.00 %
03 long P>5GeV		1619 from	2133 75.90 %]	0 clones [0.00 %], purity:100.00 %, hitEff:100.00 %
04 long fromB		5 from	5 [100.00 %]	0 clones [0.00 %], purity:100.00 %, hitEff:100.00 %
05 long fromB P>5GeV		3 from	3 [100.00 %]	0 clones [0.00 %], purity:100.00 %, hitEff:100.00 %
06 UT+T strange		341 from	561 [60.78 %]	0 clones [0.00 %], purity:100.00 %, hitEff:100.00 %
07 UT+T strange P>5GeV		133 from	152 87.50 %]	0 clones [0.00 %], purity:100.00 %, hitEff:100.00 %
08 noVelo+UT+T strange		193 from	309 62.46 %]	0 clones [0.00 %], purity:100.00 %, hitEff:100.00 %
09 noVelo+UT+T strange P>5GeV		82 from	95 [86.32 %]	0 clones [0.00 %], purity:100.00 %, hitEff:100.00 %
10 UT+T SfromDB		10 from	18 [55.56 %]	0 clones [0.00 %], purity:100.00 %, hitEff:100.00 %
11 UT+T SfromDB P>5GeV		1 from	1 [100.00 %]	0 clones [0.00 %], purity:100.00 %, hitEff:100.00 %
12_noVelo+UT+T_SfromDB_P>5GeV	1	1 from	1 [100.00 %]	0 clones [0.00 %], purity:100.00 %, hitEff:100.00 %
13_hasT_electrons	1	1450 from	2337 [62.05 %]	7 clones [0.48 %], purity: 99.94 %, hitEff: 99.92 %
14_long_electrons		82 from	374 [21.93 %]	0 clones [0.00 %], purity:100.00 %, hitEff:100.00 %
<pre>15_long_fromB_electrons</pre>	1	2 from	4 [50.00 %]	0 clones [0.00 %], purity:100.00 %, hitEff:100.00 %
<pre>16_long_electrons_P>5GeV</pre>	1	30 from	36 [83.33 %]	0 clones [0.00 %], purity:100.00 %, hitEff:100.00 %
17_long_fromB_electrons_P>5GeV	/:	2 from	2 [100.00 %]	0 clones [0.00 %], purity:100.00 %, hitEff:100.00 %

The reconstructible definition used in this checker is $(\#_{MThits} \ge 4)$

Fake Downstream Tracking

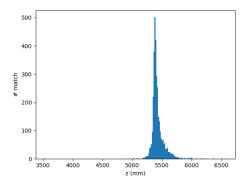
Similarly, a fake downstream tracking can be defined. The goal is to provide a base for the development of the algorithm, and allow to measure the impact of design choices individually.


Downstream tracking (cheated)

**** Downstream		3391	tracks	including	0 ghosts [0.00 %], Event average 0.00 % ****	
01_UT+T	:	2877	from	3005 [95.74 %]	1 clones [0.03 %], purity:100.00 %, hitEff: 99.98	%
02_UT+T_P>5GeV	:	1604	from	1704 [94.13 %]	0 clones [0.00 %], purity:100.00 %, hitEff:100.00	%
03_UT+T_strange	:	338	from	352 [96.02 %]	0 clones [0.00 %], purity:100.00 %, hitEff:100.00	%
04_UT+T_strange_P>5GeV	:	132	from	143 [92.31 %]	0 clones [0.00 %], purity:100.00 %, hitEff:100.00	%
05_noVelo+UT+T_strange	:	191	from	199 [95.98 %]	0 clones [0.00 %], purity:100.00 %, hitEff:100.00	%
06_noVelo+UT+T_strange_P>5GeV	:	81	from	88 [92.05 %]	0 clones [0.00 %], purity:100.00 %, hitEff:100.00	%
07_UT+T_fromDB	:	37	from	38 [97.37 %]	0 clones [0.00 %], purity:100.00 %, hitEff:100.00	%
08_UT+T_fromBD_P>5GeV	:	18	from	18 [100.00 %]	0 clones [0.00 %], purity:100.00 %, hitEff:100.00	%
09_noVelo+UT+T_fromBD	:	7	from	7 [100.00 %]	0 clones [0.00 %], purity:100.00 %, hitEff:100.00	%
10_noVelo+UT+T_fromBD_P>5GeV	:	1	from	1 [100.00 %]	0 clones [0.00 %], purity:100.00 %, hitEff:100.00	%
11_UT+T_SfromDB	:		from	9 [100.00 %]	0 clones [0.00 %], purity:100.00 %, hitEff:100.00	
12_UT+T_SfromDB_P>5GeV	:		from	1 [100.00 %]	0 clones [0.00 %], purity:100.00 %, hitEff:100.00	
13_noVelo+UT+T_SfromDB	:	6	from	6 [100.00 %]	0 clones [0.00 %], purity:100.00 %, hitEff:100.00	%
14_noVelo+UT+T_SfromDB_P>5GeV	:	1	from	1 [100.00 %]	0 clones [0.00 %], purity:100.00 %, hitEff:100.00	%

The reconstructible definition used in this checker is $(\#_{UPhits} \ge 3 \land \#_{MThits} \ge 4)$

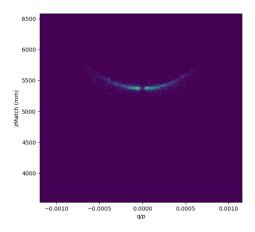
Downstream tracking



March 7th, 2024

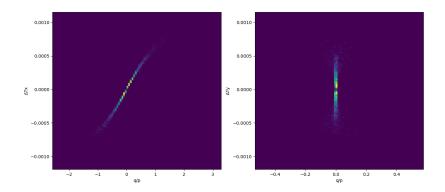
U2 Downstream tracking studies

Kink position (zMatch)



Peak at z = 5380 mm

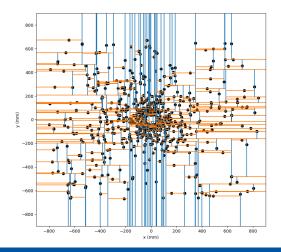
March 7th, 2024


$zMatch \ vs \ q/p$

March 7th, 2024

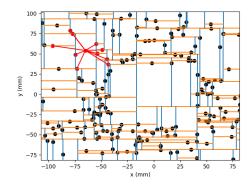
True $\Delta tx \ \Delta ty \ vs \ q/p$

March 7th, 2024

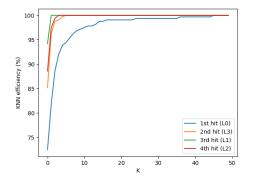

U2 Downstream tracking studies

Hits data structure

- In run3, UT hits are stored in a grid of sorted strips (in x)
- In run5, UP hits will be pixels, and fast lookup will be very important
- Simulation estimate O(800) pixel hits per layer in UP
- Hit density is not uniform (concentrated around the beamline) \Rightarrow need for an adaptive data structure


KDTree

- Space partitioning data structure for organizing points in a k-dimensional space. (here 2D)
- For N points:
 - static creation:
 O(N × log(N))
 - addition / removal of a point: O(log(N))
 - K nearest neighbors: O(K × log(N))
- O(800) hits per layer in UP


KNN

Example KNN query with K=10, zoomed on center region

KNN efficiency

- Find 1st hit using true zMatch and assuming origin at (0,0,0)
- Find 2nd hit using 1st hit and zMatch as straight line constraints
- Find 3rd and 4th hit using 1st and 2nd hit as straight line constraints

March 7th, 2024

Conclusion

Done:

- Fake algorithms to produce MT seeds and downstream tracks
- MC checking sequence to measure efficiencies

Future work:

- Fit the MT seeds and compute a state from the hits informations
- Tune search windows in each layers
- Measure efficiencies

