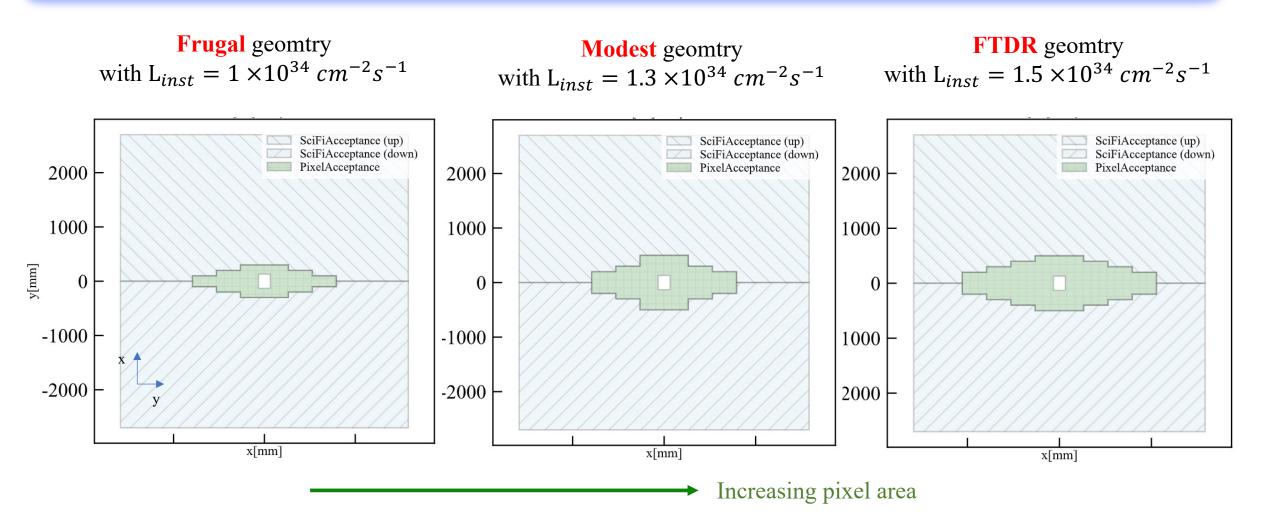
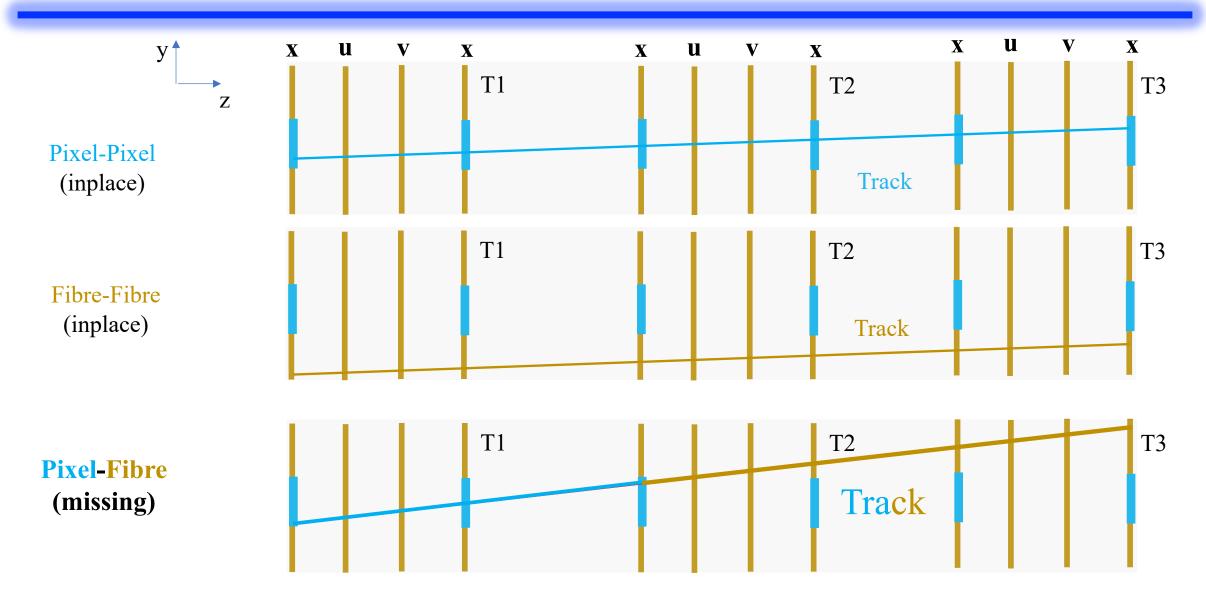
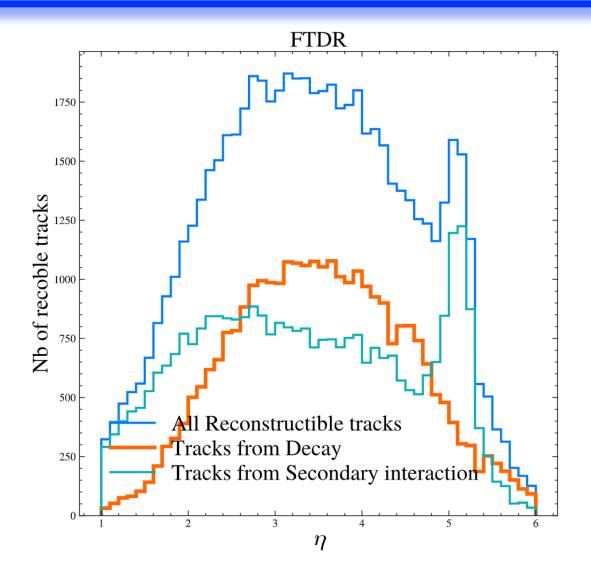

Mighty Tracker: Pixel to Fibre track finding algorithm


Abhijit Mathad and Renato Quagliani LHCb Upgrade II Tracking workshop 14 November 2023

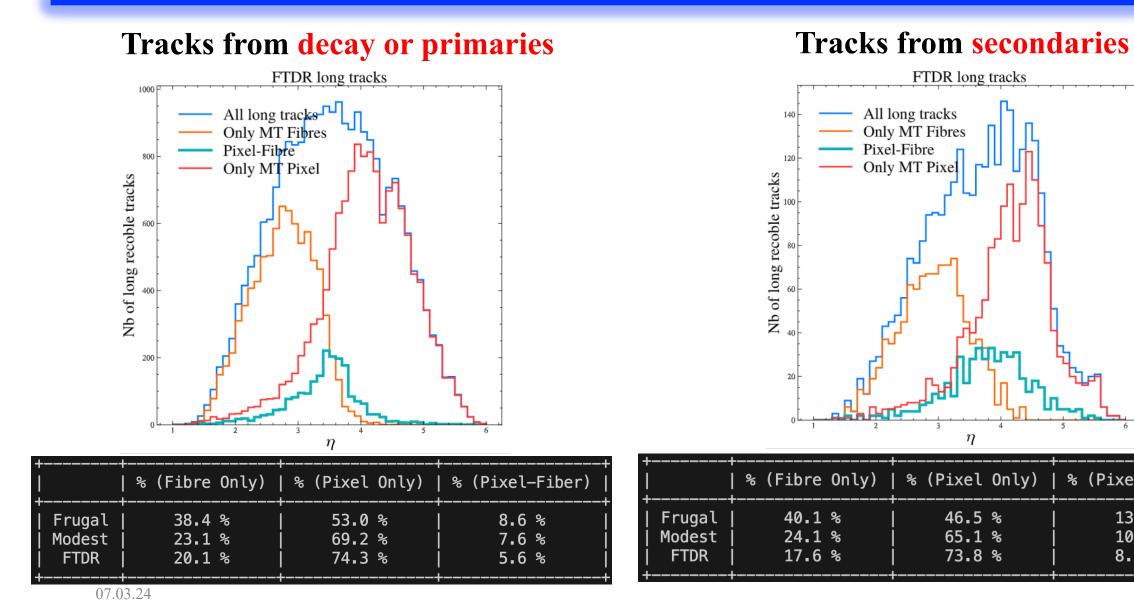

Mighty Tracker (MT)

Descoping scenarios of MT



Flavours of MT tracks

What is the gain in track efficiency and effect on ghost rate for long and downstream tracks?

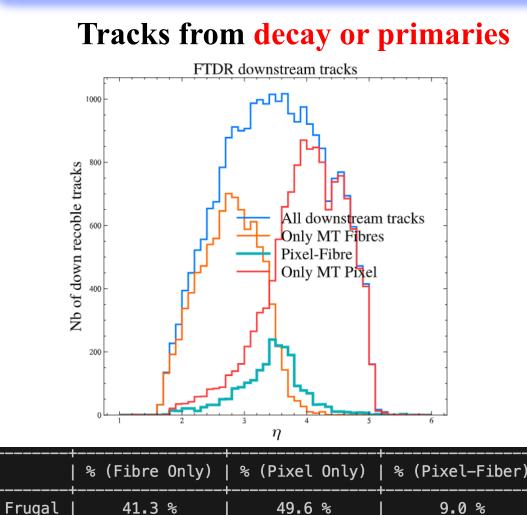

Tracks in the MT

Large fraction of tracks from secondary interactions.

What is the fraction of Pix-Pix, Fib-Fib and Pix-Fib tracks?

Fraction of MT Pixel-Fibre (Long tracks)

6

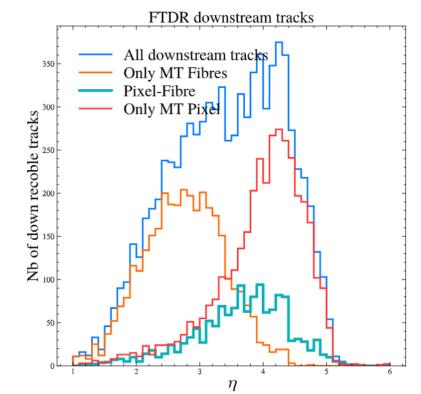

% (Pixel-Fiber)

13.3 %

10.8 %

8.6 %

Fraction of MT Pixel-Fibre (Downstream tracks)


66.7 %

72.0 %

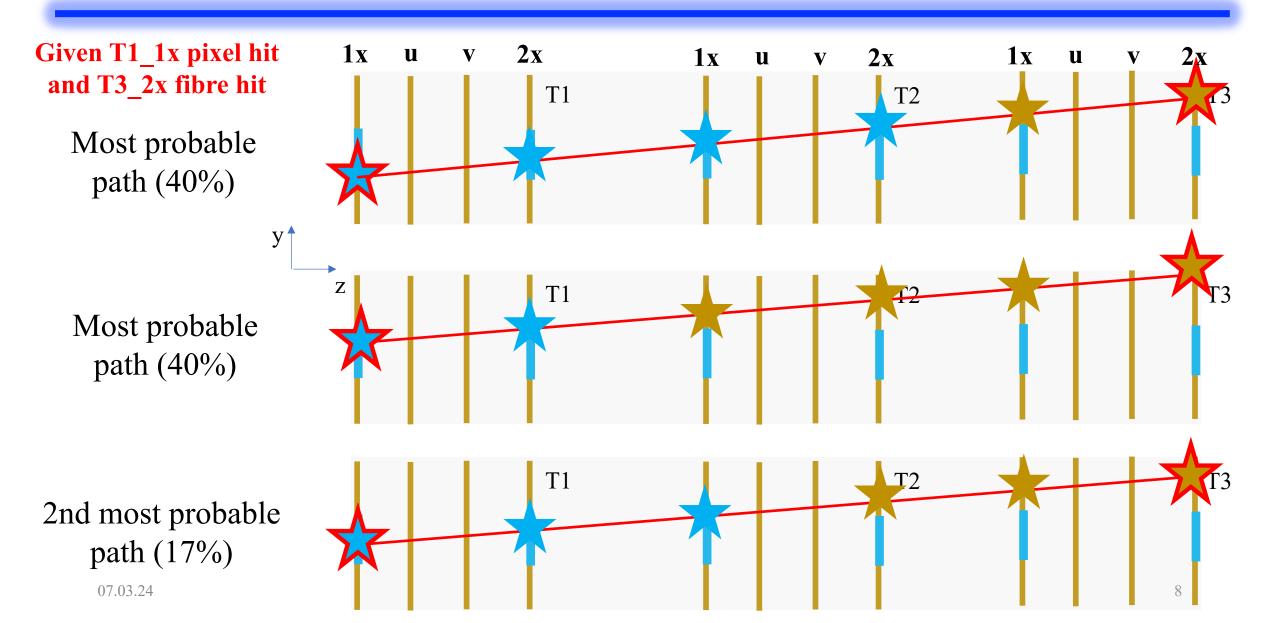
8.2 %

6.1 %

Tracks from secondaries

+	% (Fibre Only)	% (Pixel Only)	% (Pixel-Fiber)
Frugal	42.6 %	42.8 %	14.6 %
Modest	24.8 %	63.1 %	12.1 %
FTDR	17.4 %	73.1 %	9.5 %

07.03.24

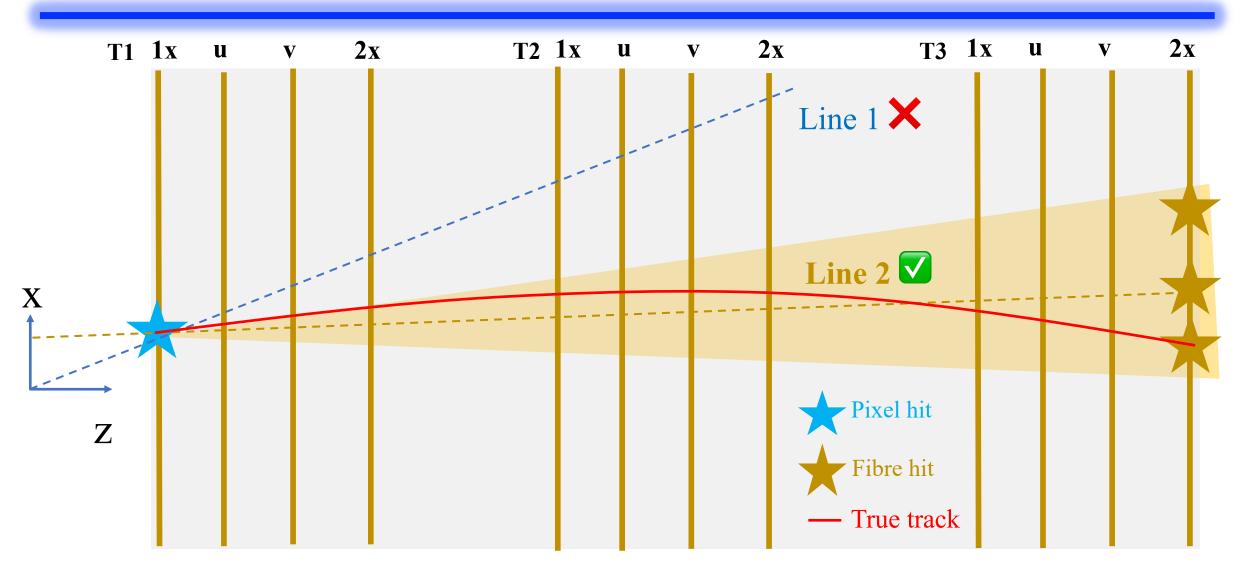

Modest

FTDR

25.1 %

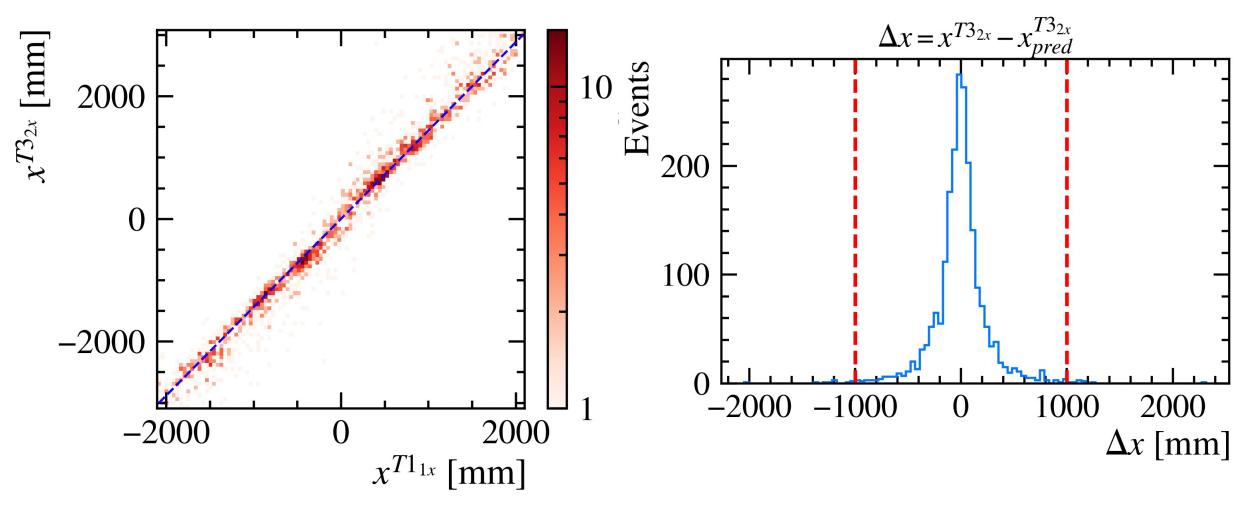
21.9 %

Most probable path for Pixel-Fibre tracks



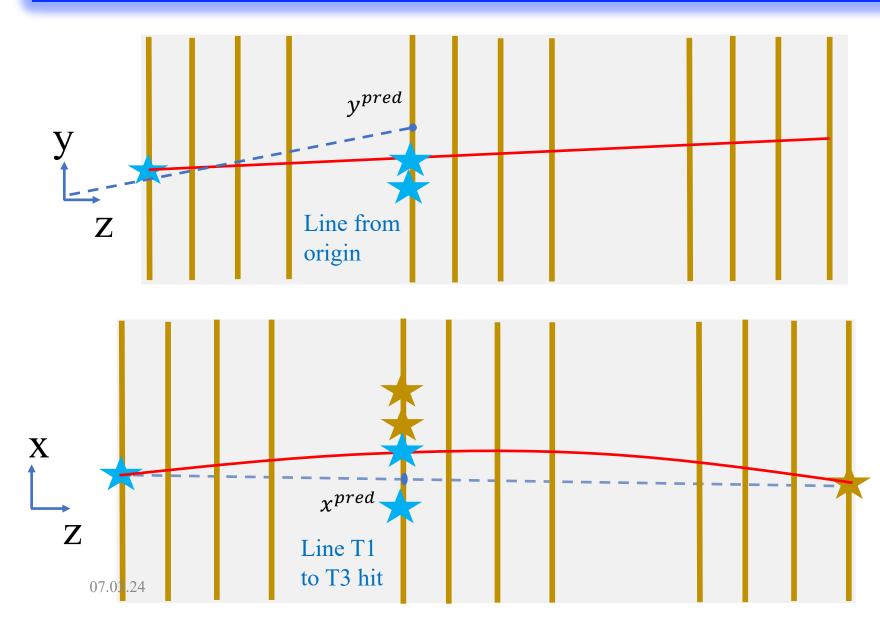
Details of the algorithm

Setup and configurations


- For this study use 3 samples:
 - $B^0 \rightarrow J/\psi \phi$ (low and high lumi options)
 - Minibias (mid lumi option).
- Developments are done inside the pyreco $\underline{\text{package}}$ (MR).
- Here the MCHits are smeared according to resolution:
 - Pixel hits with x pitch and y pitch size: 52 x 150 micros.
 - Fiber hits with x pitch size of 250 microns.
 - Pixel hit efficiency is 96% and Fiber hit efficiency is 98%.

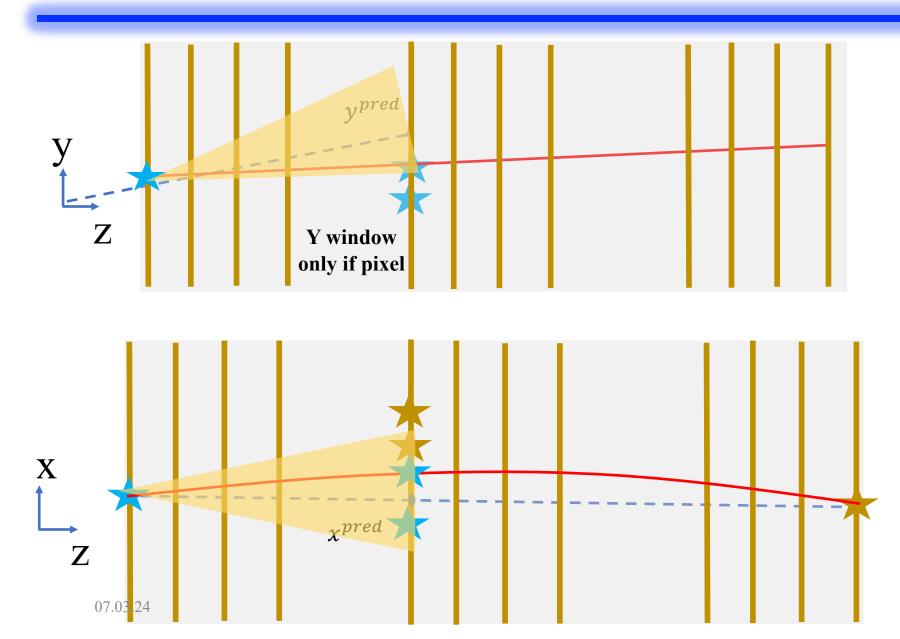
Step 1 (Two hit combo): Collect T3_2x fibre hits

Two hit-combo (far in z and in distinct stations) to minimise effect of hit inefficiency. $_{11}$

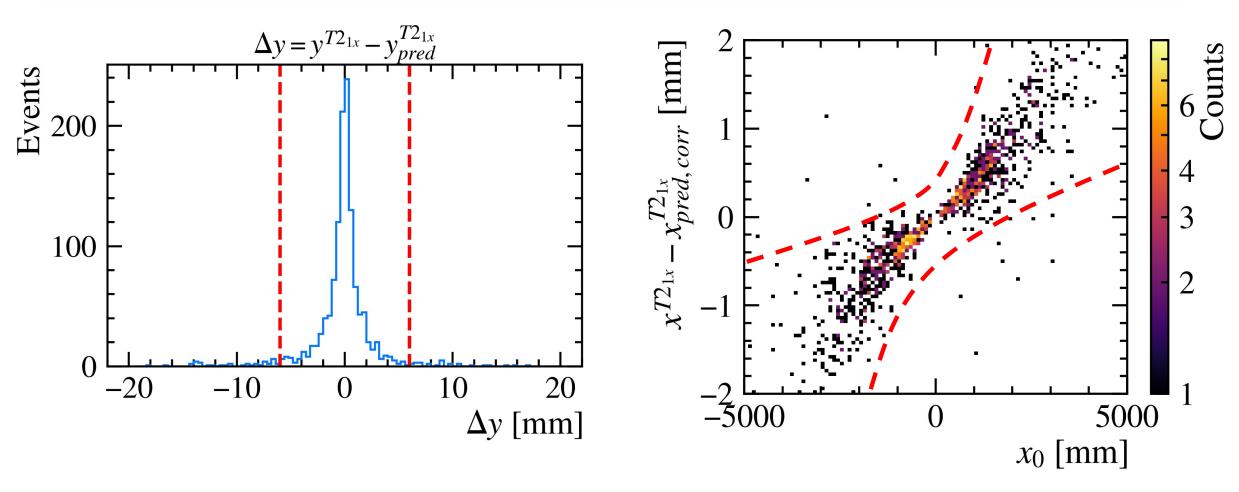

Two hit combination window: Truth info

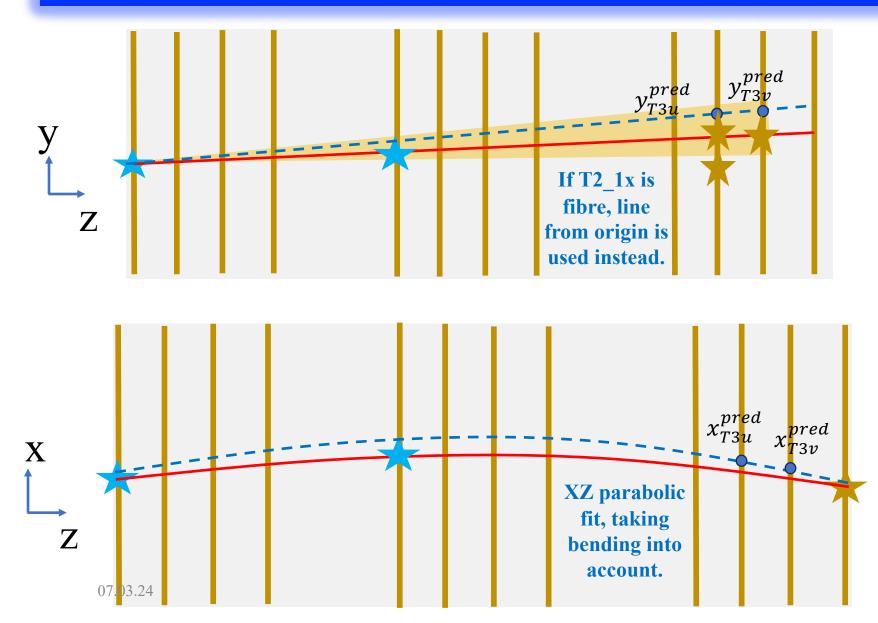
Model it with a straight line

Pick a window with high eff.


Step 2: Pixel or fibre part of T2_1x?

- Using yz line (from origin) and xz line (T1- T3), predict (x^{pred}, y^{pred}).
- With this select fibre or pixel part of T2_1x.


Step 3: Collect T2_1x pixel or fibre hits

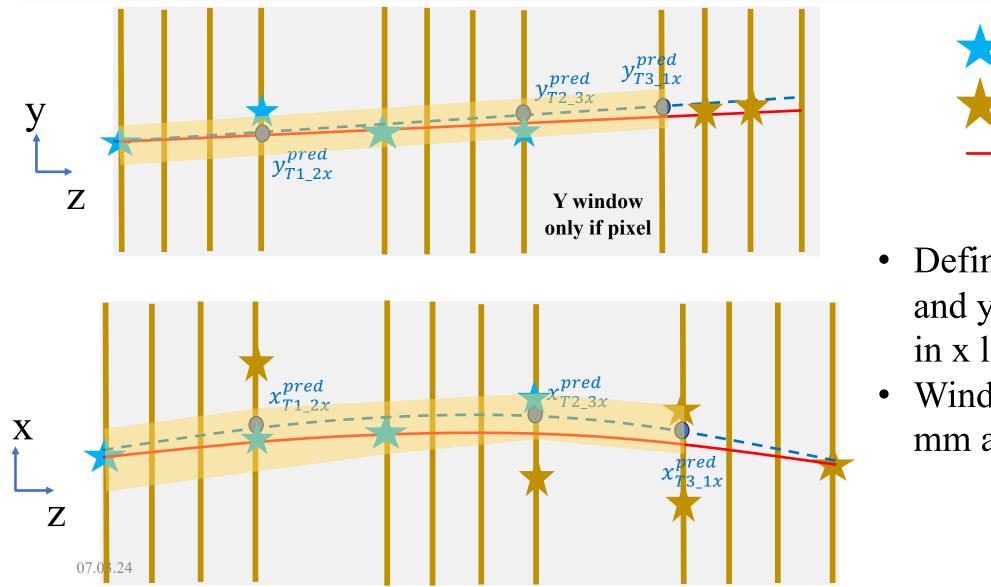

Pick a window around predicted values, correcting for "assumption of infinite momentum track (xz line)" and collect hits in T2_1x.

Three hit combination window: Truth info

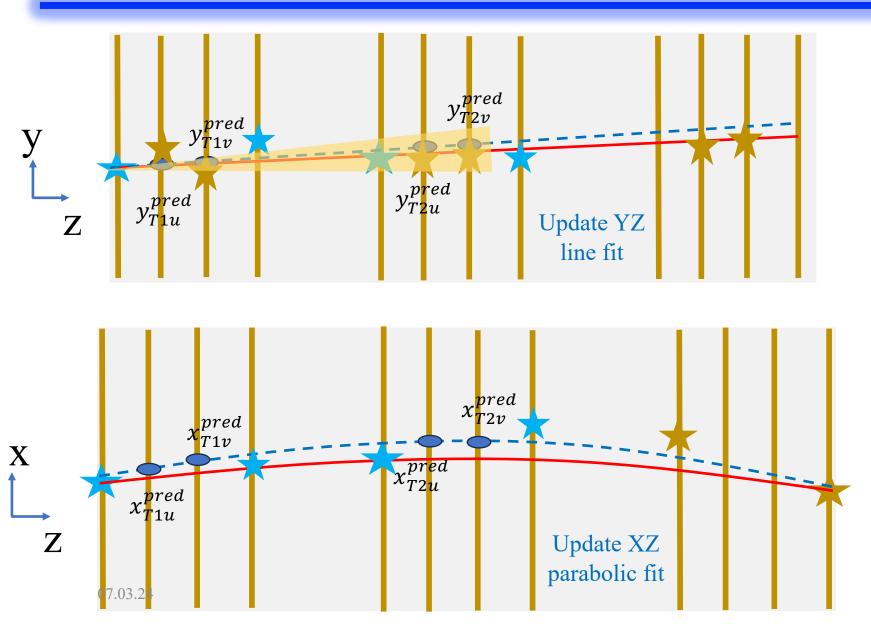
Windows in Δy and Δx^{corr} as function of x intercept, x_0 (in other works track momentum) is defined.

Step 4: Collect hits in T3 u/v layers

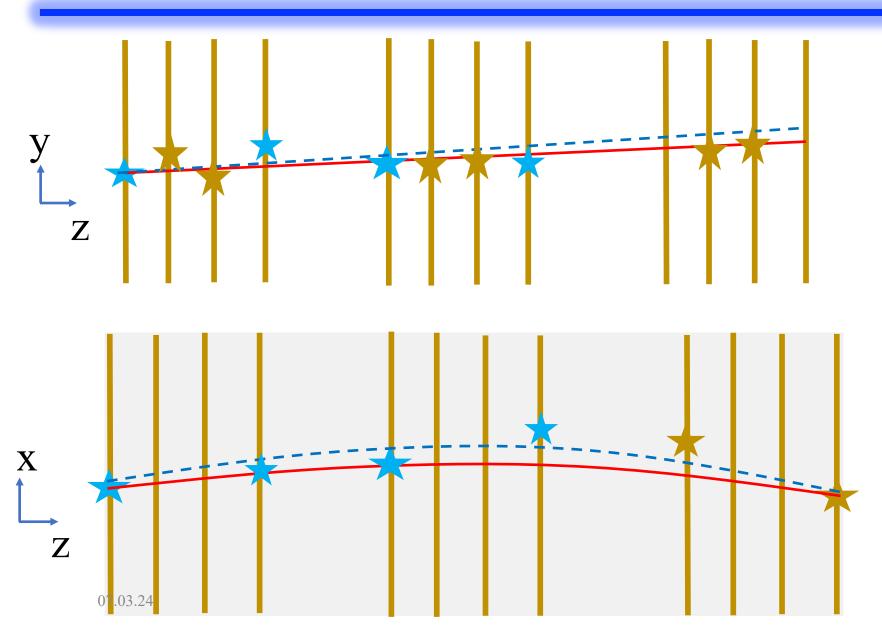
- Using updated yz line + xz parabola, get (x,y) prediction at T3 u/v.
- The x prediction + u/v hits give y information
- Open window in y to collect T3 u/v hits.
- Window size: 1 mm if T2 pixel or 5 mm for T2 fibre.


Step 5: Pixel or fibre part of other x layers?

- With updated yz line
 + old parabola,
 predict x,y at other x
 layers.
- With this pick either pixel or fibre part.

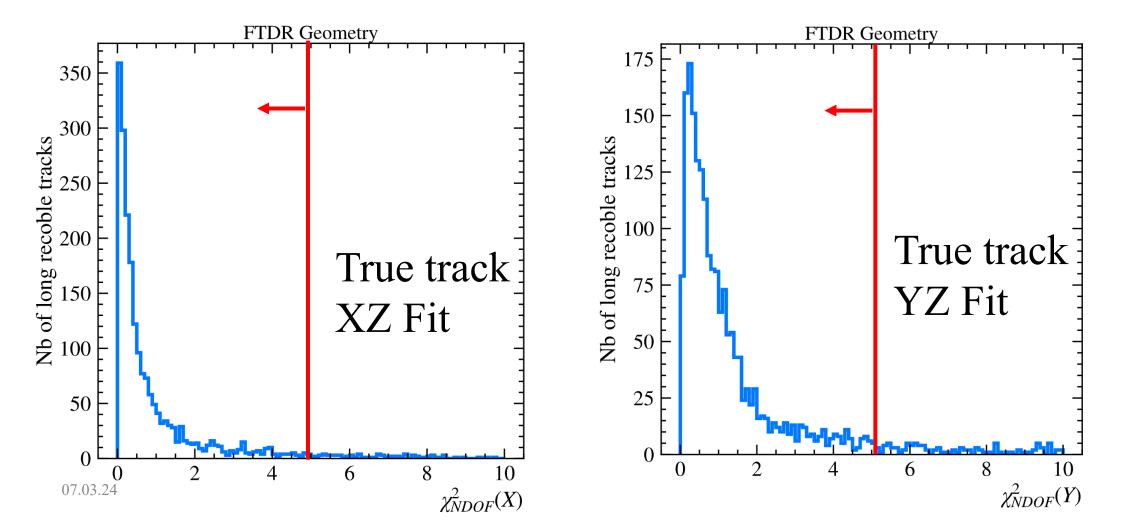

Step 6: Collect pixel or fibre hits in all other x layers

- Define windows in x and y to collect hits in x layers.
- Window size: x is 1 mm and y is 10 mm.


Step 7: Collect hits in other uv layers

- Requiring 6 hits, we update yz line + parabola to predict (x,y) at other uv layers.
- Collect hits in uv layers with window in y (5mm).

Step 8: Build the MT track with track quality cuts


Pixel hit
Fibre hit
True track

--- Reconstructed track

Reconstructed track obtained from two independent 2D fits: xz plane and yz plane. And keep good quality tracks.

What is the good track quality requirement?

Fit the true tracks like the reconstructed tracks to decide on **cut**.

21

Increasing tracking efficiency and clone killing

- Ambiguity in selecting T2_1x or T2_2x in 3 hit combination. To increase efficiency, we execute both scenarios, each time excluding the hits that have already been used.
- Ambiguity also exists in selecting layers in T1 and T3. Here we build tracks for all four scenarios: (T1_1x-T3_2x), (T1_2x-T3_2x), etc.
- At the end we run clone killing: Out of two tracks that are close and have more than 30% (pixel) or 20% (fibre) hit overlap, only one is kept based on nhits or min track χ^2 .
- Additionally to decrease the clone rate, we remove all the hits used in building Pixel-Pixel tracks in MT.

Performance

Frugal: Before and after Pixel-Fiber tracking

Before

settings_Frugal_6Layers_L1p0e34.json

settings_Frugal_6Layers_L1p0e34.json						
Nb Reco/Nb Recoble	Efficiency	Clones				
46547 / 86391	53.88 %	53(0.11 %)				
19557 / 31102	62.88 %	26(0.13 %)				
		27(0.10 %)				
/		0(0.00 %)				
		22(0.07 %)				
		22(0.08 %)				
		15(0.08 %)				
		21(0.08 %)				
		14(0.08 %)				
		13(0.11 %)				
		13(0.12 %)				
		13(0.13 %) 8(0.05 %)				
		8(0.05 %)				
		0(0.00 %)				
		0(0.00 %)				
		0(0.00 %)				
		GhostRate				
		19.52 %				
	Nb Reco/Nb Recoble 46547 / 86391	Nb Reco/Nb Recoble Efficiency 46547 / 86391 53.88 % 19557 / 31102 62.88 % 26782 / 42244 63.40 % 208 / 13059 1.59 % 30174 / 37305 80.88 % 27702 / 34099 81.24 % 18213 / 21424 85.01 % 26078 / 31694 82.28 % 17291 / 20193 85.63 % 12138 / 12710 95.50 % 10489 / 10955 95.75 % 9716 / 10013 97.03 % 16212 / 19151 84.65 % 15506 / 17965 86.31 % 7525 / 8314 90.51 % 84 / 2863 2.93 % 83 / 2774 2.99 % 50 / 1866 2.68 % #RecoedTracks #FakeTracks				

Pix-Fib is 67% efficient with 15% clone rate 5% boost in Long track eff. Ghost rate reduction by 1.2%

Category		Nb Reco/Nb Recol	ble Efficiency	Clones
HasMT(all)		49123 / 86391	56.86 %	792(1.61 %)
HasMT(pix-p	ix)	19573 / 31102	62.93 %	26(0.13 %)
HasMT(fib-f	ib)	25772 / 42244	61.01 %	140(0.54 %)
HasMT(pix-f	ib)	3778 / 13059	28.93 %	626(16.02 %)
Long(all)		31560 / 37305	84.60 %	428(1.35 %)
Longeta[2,5		29079 / 34099	85.28 %	416(1.43 %)
Longeta[2,5		25416 / 28858	88.07 %	366(1.44 %)
Longeta[2,5],p>5GeV	19208 / 21424	89.66 %	244(1.27 %)
Long_decay		28373 / 33260	85.31 %	380(1.34 %)
Long_decaye	ta[2,5]	26082 / 30325	86.01 %	368(1.41 %)
Long_decaye	ta[2,5],p>3GeV	22957 / 25886	88.69 %	318(1.38 %)
Long_decaye	ta[2,5],p>5GeV	17570 / 19502	90.09 %	212(1.20 %)
(!e)Longeta	[2,5]	27232 / 31694	85.92 %	368(1.35 %)
	[2,5],p>5GeV	18185 / 20193	90.06 %	212(1.16 %)
(!e)Long(Pi		12144 / 12710	95.55 %	13(0.11 %)
	x-Pix),eta[2,5]	10495 / 10955	95.80 %	13(0.12 %)
	x-Pix),eta[2,5],p>5GeV	9720 / 10013	97.07 %	13(0.13 %)
(!e)Long(Fi	b-Fib)	15518 / 19151	81.03 %	57(0.37 %)
	b-Fib),eta[2,5]	14838 / 17965	82.59 %	57(0.38 %)
(!e)Long(Fi	b-Fib),eta[2,5],p>5GeV	7145 / 8314	85.94 %	38(0.53 %)
(!e)Long(Pi	x-Fib)	1922 / 2863	67.13 %	298(15.06 %)
	x-Fib),eta[2,5]	1899 / 2774	68.46 %	298(15.24 %)
<pre>(!e)Long(Pi</pre>	x-Fib),eta[2,5],p>5GeV	1320 / 1866	70.74 %	161(11.89 %)
#Events		#RecoedTracks	s #FakeTracks	GhostRate
100		60503	11076	18.31 %

NB: The windows for hit selection have not been fully tuned!

Modest: Before and after Pixel-Fiber tracking

Before

After

settings_Modest_6Layers_L1p3e34.json

settings_Modest_6Layers_L1p3e34.json	Category	Nb Reco/Nb Recoble	Efficiency	Clones	
Category Nb Reco/Nb Recoble Eff HasMT(all) 54517 / 105473 5 HasMT(pix-pix) 30379 / 50568 6 HasMT(fib-fib) 23892 / 38216 6 HasMT(fib-fib) 23892 / 38216 6 HasMT(pix-fib) 246 / 16723 6 Long(all) 36027 / 44953 6 Longeta[2,5] 33069 / 41131 6 Longeta[2,5], p>5GeV 22684 / 26000 6 (!e)Longeta[2,5], p>5GeV 21550 / 24547 6 (!e)Long(Pix-Pix), eta[2,5], p>5GeV 19643 / 20817 6 (!e)Long(Pix-Pix), eta[2,5], p>5GeV 15954 / 16425 6 (!e)Long(Fib-Fib), eta[2,5], p>5GeV 15954 / 16425 6 (!e)Long(Fib-Fib), eta[2,5], p>5GeV 13507 / 15940 8 (!e)Long(Fib-Fib), eta[2,5], p>5GeV 5540 / 6086 9 (!e)Long(Pix-Fib), eta[2,5], p>5GeV 98 / 3922 9 (!e)Long(Pix-Fib), eta[2,5], p>5GeV 56 / 2036 9	Clones 51.69 % 55(0.10 %) 60.08 % 24(0.08 %) 62.52 % 31(0.13 %) 1.47 % 0(0.00 %) 80.14 % 21(0.06 %) 87.25 % 0(0.00 %) 81.46 % 20(0.06 %) 87.79 % 0(0.00 %) 94.36 % 6(0.03 %) 97.13 % 0(0.00 %) 83.20 % 14(0.10 %) 84.74 % 14(0.10 %) 2.50 % 0(0.00 %) 2.58 % 0(0.00 %) 2.58 % 0(0.00 %) 2.58 % 0(0.00 %) 2.58 % 0(0.00 %) 2.58 % 0(0.00 %) 2.58 % 0(0.00 %) 2.58 % 0(0.00 %) 2.58 % 0(0.00 %) 2.58 % 0(0.00 %) 2.58 % 0(0.00 %) 2.58 % 0(0.00 %) 2.58 % 0(0.00 %) 2.58 % 0(0.00 %) 2.58 % 0(0.00 %) 2.58 % 0(0.00 %) 2.58 % 0(0.00 %) 2.80 % 12.80 % <th><pre>HasMT(all) HasMT(pix-pix) HasMT(fib-fib) HasMT(pix-fib) Long(all) Longeta[2,5],p>3GeV Longeta[2,5],p>5GeV Long_decay Long_decayeta[2,5],p>3GeV Long_decayeta[2,5],p>3GeV Long_decayeta[2,5],p>5GeV (!e)Longeta[2,5],p>5GeV (!e)Longeta[2,5],p>5GeV (!e)Long(Pix-Pix),eta[2,5] (!e)Long(Pix-Pix),eta[2,5],p>5GeV (!e)Long(Fib-Fib),eta[2,5] (!e)Long(Fib-Fib),eta[2,5],p>5GeV</pre></th> <th>57544 / 105473 30396 / 50568 22747 / 38216 4401 / 16723 37824 / 44953 34843 / 41131 30975 / 34798 23888 / 26000 34088 / 40088 31334 / 36590 28036 / 31230 21886 / 23693 32716 / 38299 22662 / 24547 19646 / 20817 17597 / 18561 15956 / 16425 13583 / 17146 12853 / 15940 5347 / 6086</th> <th>54.56 % 60.11 % 59.52 % 26.32 % 84.14 % 84.71 % 89.01 % 91.88 % 85.03 % 85.64 % 89.77 % 92.37 % 85.42 % 92.32 % 94.37 % 94.81 % 97.14 % 79.22 % 80.63 % 87.86 %</th> <th>987(1.71 %) 24(0.08 %) 216(0.95 %) 747(16.35 %) 536(1.41 %) 527(1.51 %) 439(1.41 %) 242(1.01 %) 349(1.02 %) 346(1.10 %) 300(1.07 %) 182(0.83 %) 376(1.15 %) 204(0.90 %) 6(0.03 %) 6(0.03 %) 0(0.00 %) 93(0.68 %) 93(0.72 %) 70(1.31 %)</th>	<pre>HasMT(all) HasMT(pix-pix) HasMT(fib-fib) HasMT(pix-fib) Long(all) Longeta[2,5],p>3GeV Longeta[2,5],p>5GeV Long_decay Long_decayeta[2,5],p>3GeV Long_decayeta[2,5],p>3GeV Long_decayeta[2,5],p>5GeV (!e)Longeta[2,5],p>5GeV (!e)Longeta[2,5],p>5GeV (!e)Long(Pix-Pix),eta[2,5] (!e)Long(Pix-Pix),eta[2,5],p>5GeV (!e)Long(Fib-Fib),eta[2,5] (!e)Long(Fib-Fib),eta[2,5],p>5GeV</pre>	57544 / 105473 30396 / 50568 22747 / 38216 4401 / 16723 37824 / 44953 34843 / 41131 30975 / 34798 23888 / 26000 34088 / 40088 31334 / 36590 28036 / 31230 21886 / 23693 32716 / 38299 22662 / 24547 19646 / 20817 17597 / 18561 15956 / 16425 13583 / 17146 12853 / 15940 5347 / 6086	54.56 % 60.11 % 59.52 % 26.32 % 84.14 % 84.71 % 89.01 % 91.88 % 85.03 % 85.64 % 89.77 % 92.37 % 85.42 % 92.32 % 94.37 % 94.81 % 97.14 % 79.22 % 80.63 % 87.86 %	987(1.71 %) 24(0.08 %) 216(0.95 %) 747(16.35 %) 536(1.41 %) 527(1.51 %) 439(1.41 %) 242(1.01 %) 349(1.02 %) 346(1.10 %) 300(1.07 %) 182(0.83 %) 376(1.15 %) 204(0.90 %) 6(0.03 %) 6(0.03 %) 0(0.00 %) 93(0.68 %) 93(0.72 %) 70(1.31 %)

#Events

100

(!e)Long(Pix-Fib),eta[2,5],p>5GeV

Pix-Fib is ~60% efficient with 12% clone rate. 4% boost in long track eff. Ghost rate reduction by 1.2%

NB: The windows for hit selection have not been fully tuned!

1359 / 2036

#RecoedTracks

66560

134(9.64 %)

GhostRate

13.00 %

66.75 %

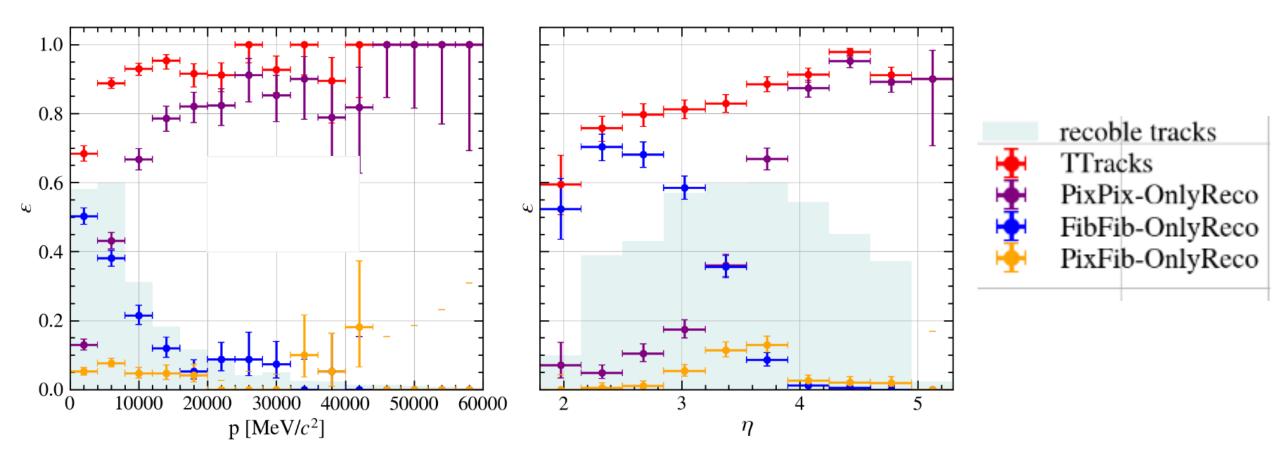
#FakeTracks

8652

FTDR: Before and after Pixel-Fiber tracking

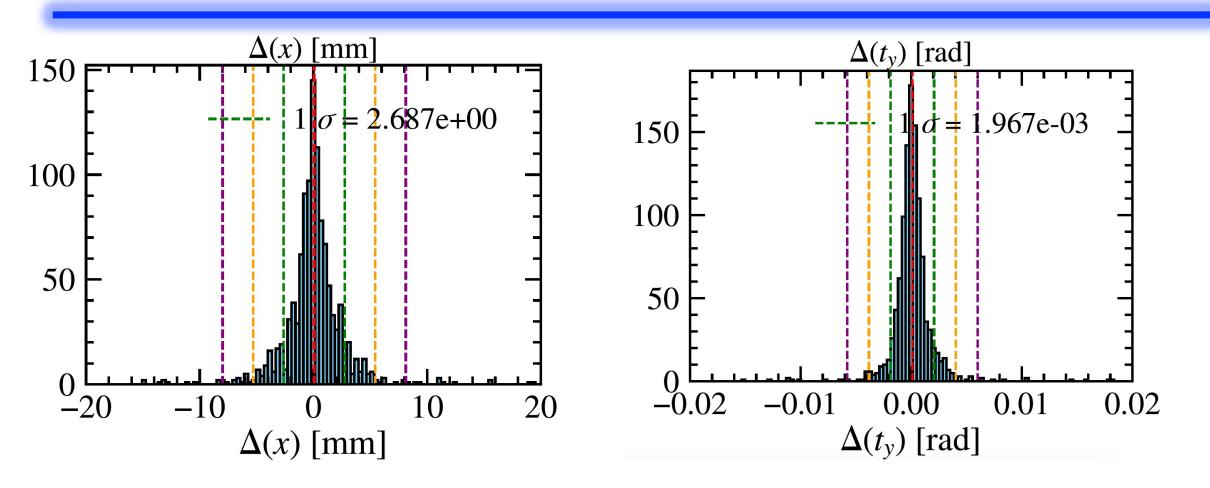
Before

After


settings_FTDR_6Layers_L1p5e34.json

settings_F	TDR_6Layers_L1p5e34.j	son		Category	Nb Reco/Nb Recoble	Efficiency	Clones
Category	Nb Reco/Nb Recoble	Efficiency	Clones	category	ND RECOVIND RECODICE	LITICIENCY	crones
<pre>HasMT(all) HasMT(pix-pix) HasMT(fib-fib) HasMT(pix-fib) Long(all) Longeta[2,5] Longeta[2,5],p>5GeV (!e)Longeta[2,5],p>5GeV (!e)Long(Pix-Pix),eta[2,5] (!e)Long(Pix-Pix),eta[2,5],p>5GeV (!e)Long(Fib-Fib),eta[2,5],p>5GeV (!e)Long(Fib-Fib),eta[2,5],p>5GeV (!e)Long(Fib-Fib),eta[2,5],p>5GeV (!e)Long(Pix-Fib),eta[2,5],p>5GeV (!e)Long(Pix-Fib),eta[2,5],p>5GeV (!e)Long(Pix-Fib),eta[2,5],p>5GeV #Events 100</pre>	65133 / 128306 40868 / 70822 23986 / 39238 279 / 18297 43342 / 54008 39833 / 49379 27615 / 30935 37623 / 45962 26265 / 29210 25873 / 27800 23428 / 25020 20454 / 21029 14958 / 18161 14084 / 16694 5770 / 6349 115 / 4371 111 / 4248 41 / 1832 #RecoedTracks 72889	50.76 % 57.71 % 61.13 % 1.52 % 80.25 % 80.67 % 89.27 % 81.86 % 89.92 % 93.07 % 93.64 % 97.27 % 82.36 % 84.37 % 90.88 % 2.63 % 2.61 % 2.24 % #FakeTracks 7595	72(0.11 %) 54(0.13 %) 18(0.08 %) 0(0.00 %) 25(0.06 %) 25(0.06 %) 12(0.04 %) 17(0.05 %) 4(0.02 %) 8(0.03 %) 8(0.03 %) 9(0.06 %) 9(0.06 %) 9(0.06 %) 9(0.06 %) 9(0.06 %) 0(0.00 %) 0(0.00 %) 0(0.00 %) 0(0.00 %) 0(0.00 %)	<pre>HasMT(all) HasMT(pix-pix) HasMT(fib-fib) HasMT(pix-fib) Longeta[2,5] Longeta[2,5],p>3GeV Longeta[2,5],p>5GeV Long_decay Long_decayeta[2,5],p>3GeV Long_decayeta[2,5],p>3GeV Long_decayeta[2,5],p>5GeV (!e)Longeta[2,5],p>5GeV (!e)Longeta[2,5],p>5GeV (!e)Long(Pix-Pix),eta[2,5],p>5GeV</pre>	68144 / 128306 40879 / 70822 23010 / 39238 4255 / 18297 45233 / 54008 41724 / 49379 37196 / 41517 28687 / 30935 40660 / 47985 37411 / 43749 33612 / 37187 26235 / 28139 39222 / 45962 27232 / 29210 25877 / 27800 23432 / 25020 20455 / 21029	53.11 % 57.72 % 58.64 % 23.26 % 83.75 % 84.50 % 89.59 % 92.73 % 84.73 % 85.51 % 90.39 % 93.23 % 85.34 % 93.23 % 93.23 % 93.08 % 93.65 % 97.27 %	828(1.21 %) 54(0.13 %) 115(0.50 %) 659(15.01 %) 322(0.71 %) 316(0.76 %) 243(0.65 %) 123(0.43 %) 233(0.57 %) 227(0.61 %) 170(0.51 %) 84(0.32 %) 235(0.60 %) 84(0.31 %) 8(0.03 %) 8(0.03 %) 0(0.00 %)
Pix-Fib is 53% eff ~4% boost in long	track eff.	7% clo	ne rate.	<pre>(!e)Long(Fib-Fib) (!e)Long(Fib-Fib),eta[2,5] (!e)Long(Fib-Fib),eta[2,5],p>5GeV (!e)Long(Pix-Fib) (!e)Long(Pix-Fib),eta[2,5] (!e)Long(Pix-Fib),eta[2,5],p>5GeV #Events 100</pre>	14348 / 18161 13507 / 16694 5574 / 6349 2306 / 4371 2283 / 4248 1203 / 1832 #RecoedTracks 76936	79.00 % 80.91 % 87.79 % 52.76 % 53.74 % 65.67 % #FakeTracks 8468	58(0.40 %) 58(0.43 %) 22(0.39 %) 169(7.22 %) 169(7.29 %) 62(5.09 %) GhostRate 11.01 %

Ghost rate increases by 0.6%


NB: The windows for hit selection have not been fully tuned!

In which kinematic range do we have gains?

Gain comes in the low momentum and mid pseudo-rapidity region.

Extrapolation of state to VELO

Hits in Pixel-Fibres matched, fitted and extrapolated back to VELO exit. Then the track state parameters are compared with the truth values.
 07.03.24 Extrapolation works well given VELO exit and MT entry are ~7 m apart.28

Conclusions

<u>Take home message</u>

- We have a **first protype** of MT Pixel-Fiber track finding in <u>pyreco</u> package.
- This **completes** the standalone MT track reconstruction.
- For free comes the **modest boost** in long/downstream track efficiency.

<u>Next steps</u>

- Ghost rate needs to be reduced with further tuning of windows.
- Port the prototype to the LHCb software for long track reconstruction.
- For TDR timescale, explore other innovative ideas for MT tracking e.g. GNNs (similar <u>efforts</u> ongoing for VELO).