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introduction

introduction

task: match T (SciFi/MP) track segment to Velo to produce long
tracks

not so difficult if you know track momentum well, and have time to
propagate through �⃗� field
idea is to see if we can build a good enough approximation to track
propagation that’s fast
propose a framework to fit arbitrary multi-dimensional
approximations

not limited to propagating track states through the magnetic field
could be used to derive fast momentum parametrisations
your application goes here…

Renato will report on performance of the matching itself etc.
menu for this talk:

fits with model linear in fit parameters (your new secret superpower!)
solving resulting equations
(multidimensional) Chebyshev expansions
fitting approximate track propagators
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fits linear in parameters

fits linear in parameters

consider 𝜒2 = ∑𝑘 (
𝑦𝑘−𝑚(�⃗�𝑘;�⃗�)

𝜎𝑘
)
2
where

𝑦 is what you measure (track position/slope after propagation)
𝜎 is the uncertainty on your measurement 𝑦
�⃗� is where you measure (track state from which you propagate)
𝑚(�⃗�; �⃗�) is the model, with fit parameters �⃗�
index 𝑘 runs over the measurements

further consider a model that is linear in fit parameters:
𝑚(�⃗�; �⃗�) = ∑𝑙 𝑝𝑙𝑔𝑙(�⃗�) = �⃗�𝑇�⃗�

𝑔𝑙 are arbitrary functions of �⃗� that do not depend on �⃗�
special class of models: can solve analytically (on next slide)

no need for things like Minuit or RooFit
fast to compute (if you choose reasonable 𝑔𝑙)
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fits linear in parameters

solving fits linear in parameters

consider 𝜒2 = ∑𝑘 (
𝑦𝑘−𝑚(�⃗�𝑘;�⃗�)

𝜎𝑘
)
2

we put 0 = ∇�⃗�𝜒2 = ∑𝑘
2
𝜎2

𝑘
(𝑦𝑘 −𝑚(�⃗�𝑘; �⃗�)) (−∇�⃗�𝑚(�⃗�𝑘; �⃗�))

rewrite: ∑𝑘
1
𝜎2

𝑘
�⃗�(�⃗�𝑘)�⃗�𝑇(�⃗�𝑘)�⃗� = ∑𝑘

1
𝜎2

𝑘
𝑦𝑘�⃗�(�⃗�𝑘)

(if you don’t see it, do 𝜕𝜒2

𝜕𝑝𝑙
= 0 for some 𝑙 by hand with pencil and

paper)

abbreviate: ⟨𝑞⟩ = ∑𝑘
𝑞𝑘
𝜎2

𝑘
for some per-measurement quantity 𝑞

(
⟨𝑔0(�⃗�)𝑔0(�⃗�)⟩ ⟨𝑔0(�⃗�)𝑔1(�⃗�)⟩ ⋯ ⟨𝑔0(�⃗�)𝑔𝑛(�⃗�)⟩
⟨𝑔1(�⃗�)𝑔0(�⃗�)⟩ ⟨𝑔1(�⃗�)𝑔1(�⃗�)⟩ ⋯ ⟨𝑔1(�⃗�)𝑔𝑛(�⃗�)⟩

⋮ ⋮ ⋱ ⋮
⟨𝑔𝑛(�⃗�)𝑔0(�⃗�)⟩ ⟨𝑔𝑛(�⃗�)𝑔1(�⃗�)⟩ ⋯ ⟨𝑔𝑛(�⃗�)𝑔𝑛(�⃗�)⟩

) ⋅ (
𝑝0
𝑝1
…
𝑝𝑛

) = (
⟨𝑦𝑔0(�⃗�)⟩
⟨𝑦𝑔1(�⃗�)⟩

…
⟨𝑦𝑔𝑛(�⃗�)⟩

)

solve 𝑀�⃗� = �⃗� to get parameters in minimum
covariance matrix of track parameters �⃗� is 𝑀−1

next slide: how to solve…
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solving linear systems

solving linear systems

solving 𝑀�⃗� = �⃗� on a computer is done with matrix decomposition
strategy: write as product: 𝑀 = 𝐴𝐵 where 𝐴 is easily invertible, and
𝐵 allows for solution through substitution
example: 𝑄𝑅 decomposition (𝑀 = 𝑄𝑅)

𝑄: rotation/mirror matrix (𝑄𝑄𝑇 = 1 = 𝑄𝑇𝑄)

𝑅 =
⎛⎜⎜⎜
⎝

∗ ∗ … ∗
0 ∗ ⋮
0 0 ⋱ ⋮
0 … 0 ∗

⎞⎟⎟⎟
⎠

𝑀�⃗� = �⃗� would be solved as �⃗� = 𝑄𝑇�⃗� and 𝑅�⃗� = �⃗�

solving is both faster and more accurate than inverting 𝑀, and
using �⃗� = 𝑀−1�⃗�
→ Solve, don’t invert (unless you really need the inverse of 𝑀)

many types of decomposition available
𝐿𝑈, 𝑄𝑅, Cholesky, SVD, …
how to choose?
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solving linear systems numerical stability

numerical stability of matrix decompositions

decomposition 𝑀 = 𝐴𝐵 – how accurate can this be?
floating point isn’t ℝ, you always have roundoff errors
we apply transformation 𝐴−1 from left to get 𝐵 and right hand side

let’s say 𝐴−1 has eigenvalues |𝜆0| ≤ |𝜆1| ≤ … ≤ |𝜆𝑛|
how does 𝐴−1 act on roundoff? does it amplify?

overall scaling of numerical roundoff does not matter

condition number 𝜅 = |𝜆𝑛|
|𝜆0| = |𝜆𝑚𝑎𝑥|

|𝜆𝑚𝑖𝑛| matters (i.e. amplification
contrast along eigenvectors)

numerically stable decomposition schemes have 𝜅 = 1:
𝑄𝑅 decomposition: general invertible matrix
𝐿𝐷𝐿𝑇 decomposition: symmetric invertible matrix
Cholesky decomposition: symmetric matrix with only positive EVs
SVD: if your matrix is problematic, or not even invertible (read up on
it in a good book)

stay clear of 𝐿𝑈 decomposition if you value your result: 𝜅 can
easily be 104…106, depending on your 𝑀
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solving linear systems Cholesky decomposition

Cholesky decomposition

Cholesky decomposition: for symmetric positive definite matrices
𝑀 = 𝑀𝑇 > 0

remember, we’re looking for a minimum in 𝜒2 – if you move out of
it, 𝜒2 increases, so 𝑀 must have only positive EVs

decompose 𝑀 = 𝐿𝐿𝑇 with 𝐿 =
⎛⎜⎜⎜⎜
⎝

𝑙11 0 … 0
𝑙21 𝑙22 ⋱ …
⋮ ∗ ⋱ 0
𝑙𝑛1 𝑙𝑛2 … 𝑙𝑛𝑛

⎞⎟⎟⎟⎟
⎠

consider related 𝑀 = �̄�𝐷�̄�𝑇 with 𝐷 = 𝑑𝑖𝑎𝑔(𝑙211,… , 𝑙2𝑛𝑛) and
̄𝑙𝑖𝑗 = 𝑙𝑖𝑗

𝑙𝑖𝑖
EVs are zeroes of characteristic polynomial 𝑑𝑒𝑡|�̄� − 𝜆1|
they’re all 1 → 𝜅 = 1

Cholesky decomposition is numerically stable
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solving linear systems Cholesky decomposition

Cholesky decomposition

Cholesky decomposition can use packed matrix storage – only
save the diagonal and below (blue, in reading order):

𝑀 =
⎛⎜⎜⎜
⎝

𝑚00 𝑚10 … 𝑚𝑛0
𝑚10 𝑚11 … 𝑚𝑛1
⋮ ∗ ⋱ ⋮

𝑚𝑛0 𝑚𝑛1 … 𝑚𝑛𝑛

⎞⎟⎟⎟
⎠

only need to update about half the amount of memory when adding
measurements to the fit
for e.g. a 64 parameter fit, that’s reading and writing about 16 kiB
of RAM instead of 32 kiB for each measurement

how to use this in your code?
# i n c l u d e < M a t h / C h o l e s k y D e c o m p . h > / / f r o m R O O T

/ / u s e p a c k e d m a t r i x s t o r a g e { m 0 0 , m 1 0 , m 1 1 , . . . }

/ / m a t r i x e l e m e n t i j c a n b e f o u n d a t i n d e x ( i * ( i + 1 ) ) / 2 + j

s t d : : v e c t o r < d o u b l e > m a t = g e t _ p a c k e d _ m a t ( ) ;

s t d : : v e c t o r < d o u b l e > r h s = g e t _ r h s ( ) ;

u n s i g n e d n p a r a m s = r h s . s i z e ( ) ;

C h o l e s k y D e c o m p G e n D i m < d o u b l e > d e c o m p ( n , m a t . d a t a ( ) ) ;

i f ( ! d e c o m p ) t h r o w s t d : : r u n t i m e _ e r r o r ( " m a t r i x  n o t  p o s i t i v e  d e f i n i t e " ) ;

d e c o m p . S o l v e ( r h s ) ;

/ / r h s n o w c o n t a i n s t h e s o l u t i o n p o f m a t * p = r h s

/ / i f y o u n e e d t h e c o v a r i a n c e :

/ / d e c o m p . I n v e r t ( m a t . d a t a ( ) ) ; / / m a t n o w c o n t a i n s c o v a r i a n c e
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track parametrisation studies

track parameter correlation studies (Hasret Nur)

What can we do with this fitting framework?
Hasret will study track models in the Mighty Tracker
in the past, used this model in main tracker1:

𝑑𝑧 = 𝑧− 𝑧0
𝑥(𝑑𝑧) = (((1 + 𝑑𝑅𝑎𝑡𝑖𝑜 ⋅ 𝑑𝑧) ⋅ 𝑐)𝑑𝑧+ 𝑏)𝑑𝑧+ 𝑎

𝑦(𝑑𝑧) = 𝑏′ ⋅ 𝑑𝑧 + 𝑎′

idea: fit MCHits of (MC) particles in 𝑥𝑧 and 𝑦𝑧 projection with
polynomials
dump resulting parameters to tuple, study correlations
with the excellent resolution of a pixel tracker, model above may
no longer be sufficient
Hasret will study what the best parametrisation is

1please evaluate polynomials like this (Horner’s scheme) — very CPU efficient, and
many CPUs have a specialized instruction fma(b, dz, a)=𝑏 ⋅ 𝑑𝑧+𝑎 (fused multiply add).
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Chebyshev polynomials

Chebyshev polynomials

definition: (𝑥 ∈ [−1, 1])

𝑇0(𝑥) = 1 𝑇1(𝑥) = 𝑥 𝑇𝑛 = 2𝑥𝑇𝑛−1(𝑥) − 𝑇𝑛−2(𝑥)

or
𝑇𝑛(𝑥) = cos(𝑛 arccos(𝑥))

fast: for fixed x, can evaluate with 1 or 2 floating point operations
per order n
these are orthogonal:

∫
1

−1
𝑇𝑗(𝑥)𝑇𝑘(𝑥) 𝑑𝑥

√1−𝑥2
=

⎧⎪
⎨⎪
⎩

0 𝑗 ≠ 𝑘
𝜋
2 𝑗 = 𝑘 ≠ 0
𝜋 𝑗 = 𝑘 = 0

or

𝑁

∑
𝑙=0

𝑇𝑗(𝑥𝑙)𝑇𝑘(𝑥𝑙) =
⎧⎪
⎨⎪
⎩

0 𝑗 ≠ 𝑘
𝑁 𝑗 = 𝑘 = 0
𝑁
2 𝑗 = 𝑘 ≠ 0

(𝑥𝑙 = cos(𝑙𝜋𝑁 ))
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Chebyshev polynomials

Chebyshev polynomials
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approximate 𝑓(𝑥) ≈ ∑𝑛
𝑘=0 𝑐𝑘𝑇𝑘(𝑥)

Chebyshev polynomials intimately related with Fourier transforms
→ fast convergence for well behaved functions

best of all: error estimates are easy: |𝑇𝑘(𝑥)| ≤ 1
→ accurate error estimate from summing up first few neglected |𝑐𝑘|
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Chebyshev polynomials

example: Chebyshev-expanded OT walk relation
need to correct for time walk in OT, depends on length 𝑙 of hit along
anode wire
parameters for walk correction come from conditions DB
calculate Chebyshev expansion on the fly in run 1/2 software
can truncate after 𝑐4 (e.g. with parameter’s from Alexandr Koslinsky’s
thesis): 𝑐0 = −0.116724, 𝑐1 = 0.544860, 𝑐2 = −0.290254, 𝑐3 = 0.196250, 𝑐4 = −0.110068
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est. error: 0.0788 ns (scanning shows max. deviation < 0.0676 ns)

notice how well-behaved the approximation error is (|𝑇𝑘(𝑥)| ≤ 1)
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track propagation fits

track propagator approximations

let’s put the pieces together
write tuple: generate state vectors (𝑥,𝑦, 𝑡𝑥, 𝑡𝑦,𝑞/𝑝) at fixed 𝑧
thanks Renato for the tuples and code
propagate through magnetic field to different 𝑧 locations
use approximate symmetry of LHCb to fit only one quadrant:

if 𝑥𝑇 < 0: 𝑥 → −𝑥, 𝑡𝑥 → −𝑡𝑥, 𝑞/𝑝 → −𝑞/𝑝
if 𝑦𝑇 < 0: 𝑦 → −𝑦, 𝑡𝑦 → −𝑡𝑦

fit 𝑝 ∈ 𝑥,𝑦, 𝑡𝑥, 𝑡𝑦 with multi-dimensional Chebyshev series, e.g.

𝑝𝑉𝑒𝑙𝑜𝐸𝑥𝑖𝑡 = ∑
𝑖,𝑗,𝑘,𝑙,𝑚

𝑝𝑖𝑗𝑘𝑙𝑚𝑇𝑖(𝑥𝑇)𝑇𝑗(𝑦𝑇)𝑇𝑘(𝑡𝑥𝑇)𝑇𝑙(𝑡𝑦𝑇)𝑇𝑚((𝑞/𝑝)𝑇)

𝑝𝑖𝑗𝑘𝑙𝑚 are the fit parameters
I am suppressing the linear transformation that brings the track
parameter ranges to the [−1,+1] interval for the Chebyshev
polynomials
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track propagation fits

tuple number 1

all initial states at the origin, flat distribution in tx and ty (100
steps from -0.4 to 0.4)

flat in q/p (200 steps from 1/(100 GeV) to 1/(500 MeV)), both
charges
then propagate through magnetic field to these values in z ([mm]):

770 (VeloExit)
2307, 2313, 2322, 2328, 2362, 2368, 2377, 2383, 2586, 2592,
2601, 2608, 2641, 2647, 2656, 2663 (UT layers, last one UTExit)
5240 (somewhere near the middle of the magnet)
7500, 8520, 9410 (BeginT, MidT, EndT)

1.6 M propagated states (many states do not reach T)

idea here is to focus on essentially prompt tracks – the q/p
estimate we use to get the q/p for a T track segment has that
assumption built in anyway
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track propagation fits

from 𝑧𝑀𝑖𝑑𝑇 to 𝑧𝑉𝑒𝑙𝑜𝐸𝑥𝑖𝑡
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for 𝑝 > 3 GeV, get RMS of 1.2 mm/1.0 mm/1.5 ⋅ 10−3/1.3 ⋅ 10−3 in
𝑥/𝑦/𝑡𝑥/𝑡𝑦

not perfect, but real tracks have multiple scattering – likely good
enough…

include Chebyshev up to first order in 𝑥, 𝑦, 𝑡𝑥, 𝑡𝑦, and up to fifth
order in 𝑞/𝑝
2 * 2 * 2 * 2 * 6 = 96 fit parameters
can do 16 fits w. 96 parameters on 1.6 M tracks in less than a
neutron lifetime
can evaluate at throughput greater than 1.5 Mtracks/s on single
core of 13 year-old laptop
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track propagation fits

from 𝑧𝑀𝑖𝑑𝑇 to 𝑧𝑈𝑇𝐸𝑥𝑖𝑡
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for 𝑝 > 3 GeV, get RMS of 4.0 mm/3.4 mm/1.5 ⋅ 10−3/1.3 ⋅ 10−3 in
𝑥/𝑦/𝑡𝑥/𝑡𝑦

not perfect, but real tracks have multiple scattering – likely good
enough…

include Chebyshev up to first order in 𝑥, 𝑦, 𝑡𝑥, 𝑡𝑦, and up to fifth
order in 𝑞/𝑝
2 * 2 * 2 * 2 * 6 = 96 fit parameters

less good than the Velo one on the last page (pointing constraint
weaker, �⃗� field starts to act!)
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track propagation fits

tuple number 2

all initial states at 𝑧𝐸𝑛𝑑𝑇

use N = 50
try out Chebyshev-based spacing of points:
𝑚𝑎𝑥+𝑚𝑖𝑛

2 + 𝑚𝑎𝑥−𝑚𝑖𝑛
2 cos(𝜋2𝑘+1

2𝑁 ) for 𝑘 = 0,… ,𝑁− 1
x: min = 0 mm, max = 3200 mm; add mirror to add the other half of
detector
y: min = 0 mm, max = 2800 mm; add mirror to add the other half of
detector
tx: min = -0.8, max = 0.8
ty: min = -0.4, max = 0.4
q/p: min = -0.002, max = 0.002

propagate to same 𝑧 values as last tuple

idea here was to optimize for potentially non-prompt tracks, if we
manage to pull out the correct pair of Velo segment and T segment
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track propagation fits

from 𝑧𝑉𝑒𝑙𝑜𝐸𝑥𝑖𝑡 into UT
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parametrise in (𝑥,𝑦, 𝑡𝑥, 𝑡𝑦,𝑞/𝑝, 𝑧𝑈𝑇)𝑇

for 𝑝 > 3 GeV, get RMS of 0.43 mm/0.35 mm/1.4 ⋅ 10−3/6.3 ⋅ 10−5

in 𝑥/𝑦/𝑡𝑥/𝑡𝑦
include Chebyshev up to first order in 𝑥, 𝑦, 𝑡𝑥, 𝑡𝑦, 𝑧𝑈𝑇, and up to
second order in 𝑞/𝑝
2 * 2 * 2 * 2 * 3 * 2 = 96 fit parameters
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summary

summary

approximations can propagate a state vector through magnetic
field

fairly low-order approximations can do a reasonable job predicting
positions and slopes
they do so with relatively little CPU

idea: use approximations to match tracks at the end of Velo, and
find hits in UT

a KD tree is the data structure to use (see Arthur’s talk or backup)
finds nearby tracks in parameter space
like std::sort and search windows, but in more then 1 dimension
needs 𝒪(𝑁 log𝑁) work to build the tree, and 𝒪(log𝑁) work to get
nearest neighbour(s) in parameter space
could also be useful to find hits nearby in position and time (timing
subdetectors?)

Renato will report on how well the matching works
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summary

summary

open questions
I am not at all sure these are the optimal parametrisations
up to which orders?
which granularity? (approximating a whole quadrant is maybe a bit
crazy)
how to best generate the tuples for fitting (best distribution in track
state space for fitting)
could imagine that, one day, we use such parametrisations to
propagate all tracks (instead of referring to the field map)…

fits linear in track parameters are fairly powerful
I hope it’s your new secret superpower!
not only useful for pattern reco problems
probably should be used far more widely

code is on gitlab (fitter code < 1700 lines of C++ incl. comments!)
feel free to take a look, maybe learn from, and to play with
approximations
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backup
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backup kd trees

recap: efficient hit finding

we’re all familiar with the s t d : : s o r t / s t d : : l o w e r _ b o u n d combo:

a u t o f i r s t H i t = h i t s I n L a y e r . b e g i n ( ) , l a s t H i t = h i t s I n L a y e r . e n d ( ) ;

s t d : : s o r t ( f i r s t H i t , l a s t H i t , [ ] ( a u t o x a , a u t o x b ) { r e t u r n x a < x b ; } ) ;

f o r ( c o n s t a u t o & s : s e e d s ) {

c o n s t a u t o d z = l a y e r Z - s . z ( ) ;

/ / p r e d i c t c o o r d i n a t e i n n e w l a y e r

c o n s t a u t o x = s . x ( ) + x . x S l o p e ( ) * d z ;

/ / o p e n u p a s e a r c h w i n d o w

c o n s t a u t o x c o v = s . c o v X ( ) + d z * ( 2 . * s . x C o v ( ) * s . x S l C o v ( ) + d z * s . x S l C o v ( ) ) ;

c o n s t a u t o x e r r = s t d : : s q r t ( x c o v ) ;

c o n s t a u t o x m i n = x - 3 . * x e r r , x m a x = x + 3 . * x e r r ;

/ / l o o p o v e r c o r r e s p o n d i n g h i t s i n r e g i o n o f i n t e r e s t

f o r ( a u t o i t = s t d : : l o w e r _ b o u n d ( f i r s t H i t , l a s t H i t , x m i n ,

[ ] ( a u t o x a , a u t o x b ) { r e t u r n x a < x b ; } ) ;

l a s t H i t ! = i t & & i t - > x ( ) < x m a x ; + + i t ) {

c o n s t a u t o & h = * i t ;

/ / d o s o m e t h i n g t o s e e d s a n d c o m p a t i b l e h i t h

}

}

well known technique, 𝑂(𝑁 log𝑁) work for s o r t , 𝑂(log𝑁) work
for l o w e r _ b o u n d

great for cases where we have a single coordinate, not so good in
two/more dimensions
can we generalise?
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backup kd trees

recap: binary search trees

The s t d : : s o r t / s t d : : l o w e r _ b o u n d trick works because it builds a balanced
binary search tree…

Find median
promote to node in binary search tree
attach "bags" with smaller/larger elements

In each "bag":
Find median..
etc

..  continue until there are no "bags" left

The binary search tree is stored
implicitly in the sorted array!
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backup kd trees

kd trees

a kd tree is a straightforward extension of that idea
recursively pick median of “bag” or sub-array as in example above
cycle through the dimensions
searching is based on the same idea as l o w e r _ b o u n d , but sometimes
needs to check the other subtree on its way up towards the root, as
there is more than one dimension

wait, can we have an example?
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backup kd trees

kd trees: building a 2d tree (1/4)

start with some points in 2D…
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backup kd trees

kd trees: building a 2d tree (2/4)

…find median along one axis, promote to tree node…
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backup kd trees

kd trees: building a 2d tree (3/4)

…find median in subsets along next axis (cyclically), promote to tree
node, …M. Schiller (Glasgow) Track matching strategies (a fitting talk) March 7th, 2024 27 / 31



backup kd trees

kd trees: building a 2d tree (4/4)

…and continue until the whole tree is built.
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backup kd trees

kd trees: code example (1/2)

whereas the s t d : : s o r t / s t d : : l o w e r _ b o u n d trick only needed the
comparison functor, kd trees need

comparison of items along named axis (𝑥/𝑦/…)
distance functor (or monotonic function of distance)

code example using single-header package kdtree
u s i n g p o i n t = s t d : : a r r a y < f l o a t , 2 > ; / / 2 D p o i n t s

c o n s t a u t o c m p = [ ] ( c o n s t p o i n t & a , c o n s t p o i n t & b , a u t o d i m ) n o e x c e p t {

r e t u r n a [ d i m ] < b [ d i m ] ; } ;

c o n s t a u t o d i s t = [ ] ( c o n s t p o i n t & a , c o n s t p o i n t & b , a u t o d i m ) n o e x c e p t {

i f ( s t d : : s i z e _ t ( - 1 ) = = d i m ) { / / f u l l d i s t a n c e

/ / a p o i n t i s n o t i t ' s o w n n e a r e s t n e i g h b o u r ( d e p e n d s

/ / o n a p p l i c a t i o n i f y o u w a n t t h i s . . . )

i f ( & a = = & b ) r e t u r n s t d : : n u m e r i c _ l i m i t s < f l o a t > : : m a x ( ) ;

/ / f u l l d i s t a n c e b e t w e e n p o i n t s - w e u s e s q u a r e d d i s t a n c e

/ / h e r e t o s a v e a s q u a r e r o o t

r e t u r n ( a [ 0 ] - b [ 0 ] ) * ( a [ 0 ] - b [ 0 ] ) +

( a [ 1 ] - b [ 1 ] ) * ( a [ 1 ] - b [ 1 ] ) ;

} e l s e { / / d i s t a n c e i n c o o r d i n a t e d i m o n l y

r e t u r n ( a [ d i m ] - b [ d i m ] ) * ( a [ d i m ] - b [ d i m ] ) ;

}

} ;

with these two helper functions, we can now find nearest
neighbours in k dimensions…
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backup kd trees

kd trees: code example (2/2)

we can now build a kd tree, and find point closest to a given point:

/ / o k a y , g e t s o m e p o i n t s f r o m s o m e w h e r e :

u s i n g P o i n t s = s t d : : v e c t o r < p o i n t > ;

P o i n t s v = / * f r o m s o m e w h e r e . . . * / ;

/ / b u i l d k d t r e e

b u i l d _ k d t r e e < 2 > ( v . b e g i n ( ) , v . e n d ( ) , c m p ) ;

/ / f i n d n e a r e s t n e i g h b o u r t o a p o i n t

c o n s t a u t o & p = * ( v . b e g i n ( ) + 4 2 ) ; / / s o m e e l e m e n t - n e e d n o t b e o n e f r o m v

a u t o n e a r e s t = f i n d _ n e a r e s t _ k d t r e e < 2 > ( v . b e g i n ( ) , v . e n d ( ) , p , c m p , d i s t ) ;

s t d : : c o u t < < " n e a r e s t  i s  ( " < < ( * n e a r e s t ) [ 0 ] < < " , " < < ( * n e a r e s t ) [ 1 ] < < " ) "

< < s t d : : e n d l ;

can also find more than one nearest neighbour:
/ / p a i r o f i t e r a t o r ( t o n e i g h b o u r ) , a n d i t s d i s t a n c e t o a p o i n t

u s i n g N e i g h b o u r W i t h D i s t a n c e = s t d : : p a i r < P o i n t s : : i t e r a t o r , f l o a t > ;

/ / a r r a y o f f i v e o f t h e s e

u s i n g F i v e B e s t = s t d : : a r r a y < N e i g h b o u r W i t h D i s t a n c e , 5 > ;

/ / p r e p a r e a n a r r a y , f i l l w i t h " n o t h i n g f o u n d "

F i v e B e s t b e s t ;

b e s t . f i l l ( s t d : : m a k e _ p a i r ( v . e n d ( ) , s t d : : n u m e r i c _ l i m i t s < f l o a t > : : m a x ( ) ) ) ;

/ / f i n d t h e f i v e n e a r e s t n e i g h b o u r s t o p

f i n d _ n _ n e a r e s t _ k d t r e e < 2 > ( v . b e g i n ( ) , v . e n d ( ) , p , b e s t . b e g i n ( ) , b e s t . e n d ( ) ,

c m p , d i s t ) ;

f o r ( c o n s t a u t o & n : b e s t ) {

s t d : : c o u t < < " n e a r  n e i g h b o u r  i s  ( " < < ( * n . f i r s t ) [ 0 ] < < " , "

< < ( * n . f i r s t ) [ 1 ] < < " )  d i s t " < < n . s e c o n d < < s t d : : e n d l ;

}
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backup kd trees

conclusion

kd trees allow
𝑂(log𝑁) searching for nearest neighbour(s) in k dimensions
need 𝑂(𝑁 log𝑁) work to build kd tree initially

if you want to play: a simple C++ version is available in the kdtree
package
possible areas of application

building block for tracking in pixel detector
matching tracks based on track parameters
tracking in detectors that supply hit time information
…(your idea here)

I hope to get people thinking, and am willing to answer questions,
and help, but probably won’t have time to work on something
myself
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