Track matching strategies (a fitting talk)

Hasret Nur, Renato Quagliani, Manuel Schiller

University of Glasgow, CERN, University of Glasgow
March 7th, 2024

introduction

■ task: match T (SciFi/MP) track segment to Velo to produce long tracks

■ not so difficult if you know track momentum well, and have time to propagate through \vec{B} field

- idea is to see if we can build a good enough approximation to track propagation that's fast
- propose a framework to fit arbitrary multi-dimensional approximations

■ not limited to propagating track states through the magnetic field
■ could be used to derive fast momentum parametrisations

- your application goes here...
- Renato will report on performance of the matching itself etc.
- menu for this talk:

■ fits with model linear in fit parameters (your new secret superpower!)

- solving resulting equations
- (multidimensional) Chebyshev expansions
- fitting approximate track propagators

fits linear in parameters

■ consider $\chi^{2}=\sum_{k}\left(\frac{y_{k}-m\left(\vec{\chi}_{k} ; \vec{p}\right)}{\sigma_{k}}\right)^{2}$ where

- y is what you measure (track position/slope after propagation)
- σ is the uncertainty on your measurement y
- \vec{x} is where you measure (track state from which you propagate)
- $m(\vec{x} ; \vec{p})$ is the model, with fit parameters \vec{p}
- index k runs over the measurements
- further consider a model that is linear in fit parameters:
$m(\vec{x} ; \vec{p})=\sum_{l} p_{l} g_{l}(\vec{x})=\vec{g}^{T} \vec{p}$
- g_{l} are arbitrary functions of \vec{x} that do not depend on \vec{p}

■ special class of models: can solve analytically (on next slide)

- no need for things like Minuit or RooFit
- fast to compute (if you choose reasonable g_{l})

solving fits linear in parameters

■ consider $\chi^{2}=\sum_{k}\left(\frac{y_{k}-m\left(\vec{x}_{k} ; \vec{p}\right)}{\sigma_{k}}\right)^{2}$
■ we put $0=\nabla_{\vec{p}} X^{2}=\sum_{k} \frac{2}{\sigma_{k}^{2}}\left(y_{k}-m\left(\vec{x}_{k} ; \vec{p}\right)\right)\left(-\nabla_{\vec{p}} m\left(\vec{x}_{k} ; \vec{p}\right)\right)$
■ rewrite: $\sum_{k} \frac{1}{\sigma_{k}^{2}} \vec{g}\left(\vec{x}_{k}\right) \vec{g}^{T}\left(\vec{x}_{k}\right) \vec{p}=\sum_{k} \frac{1}{\sigma_{k}^{2}} y_{k} \vec{g}\left(\vec{x}_{k}\right)$
(if you don't see it, do $\frac{\partial x^{2}}{\partial p_{l}}=0$ for some l by hand with pencil and paper)
■ abbreviate: $\langle\mathfrak{q}\rangle=\sum_{k} \frac{q_{k}}{\sigma_{k}^{2}}$ for some per-measurement quantity q

$$
\left(\begin{array}{cccc}
\left\langle g_{0}(\vec{x}) g_{0}(\vec{x})\right\rangle & \left\langle g_{0}(\vec{x}) g_{1}(\vec{x})\right\rangle & \ldots & \left\langle g_{0}(\vec{x}) g_{n}(\vec{x})\right\rangle \\
\left\langle g_{1}(\vec{x}) g_{0}(\vec{x})\right\rangle & \left\langle g_{1}(\vec{x}) g_{1}(\vec{x})\right\rangle & \cdots & \left\langle g_{1}(\vec{x}) g_{n}(\vec{x})\right\rangle \\
\vdots & \vdots \\
\vdots & \vdots & \ddots & \vdots \\
\left\langle g_{n}(\vec{x}) g_{0}(\vec{x})\right\rangle & \left\langle g_{n}(\vec{x}) g_{1}(\vec{x})\right\rangle & \cdots & \left\langle g_{n}(\vec{x}) g_{n}(\vec{x})\right\rangle
\end{array}\right) \cdot\left(\begin{array}{c}
p_{0} \\
p_{1} \\
\ldots \\
p_{n}
\end{array}\right)=\left(\begin{array}{c}
\left\langle y g_{0}(\vec{x})\right\rangle \\
\left\langle y g_{1}(\vec{x})\right\rangle \\
\cdots \\
\left\langle y g_{n}(\vec{x})\right\rangle
\end{array}\right)
$$

■ solve $M \vec{p}=\vec{r}$ to get parameters in minimum

- covariance matrix of track parameters \vec{p} is M^{-1}

■ next slide: how to solve...

solving linear systems

■ solving $M \vec{p}=\vec{r}$ on a computer is done with matrix decomposition
■ strategy: write as product: $M=A B$ where A is easily invertible, and B allows for solution through substitution

- example: $Q R$ decomposition ($M=Q R$)
- Q : rotation/mirror matrix $\left(Q Q^{T}=1=Q^{T} Q\right)$

■ $R=\left(\begin{array}{cccc}* & * & \ldots & * \\ 0 & * & & \vdots \\ 0 & 0 & \ddots & \vdots \\ 0 & \ldots & 0 & *\end{array}\right)$

- $M \vec{x}=\vec{r}$ would be solved as $\vec{w}=Q^{T} \vec{x}$ and $R \vec{x}=\vec{w}$
- solving is both faster and more accurate than inverting M, and using $\vec{x}=M^{-1} \vec{r}$
\rightarrow Solve, don't invert (unless you really need the inverse of M)
- many types of decomposition available

■ $L U, Q R$, Cholesky, SVD, ...

- how to choose?

numerical stability of matrix decompositions

- decomposition $M=A B$ - how accurate can this be?

■ floating point isn't \mathbb{R}, you always have roundoff errors

- we apply transformation A^{-1} from left to get B and right hand side

■ let's say A^{-1} has eigenvalues $\left|\lambda_{0}\right| \leq\left|\lambda_{1}\right| \leq \ldots \leq\left|\lambda_{n}\right|$

- how does A^{-1} act on roundoff? does it amplify?
- overall scaling of numerical roundoff does not matter
- condition number $\kappa=\frac{\left|\lambda_{n}\right|}{\left|\lambda_{0}\right|}=\frac{\left|\lambda_{\text {max }}\right|}{\lambda_{\text {min }} \mid}$ matters (i.e. amplification contrast along eigenvectors)
■ numerically stable decomposition schemes have $\kappa=1$:
- $Q R$ decomposition: general invertible matrix
- $L D L^{T}$ decomposition: symmetric invertible matrix
- Cholesky decomposition: symmetric matrix with only positive EVs

■ SVD: if your matrix is problematic, or not even invertible (read up on it in a good book)
■ stay clear of $L U$ decomposition if you value your result: κ can easily be $10^{4} \ldots 10^{6}$, depending on your M

Cholesky decomposition

■ Cholesky decomposition: for symmetric positive definite matrices $M=M^{T}>0$

■ remember, we're looking for a minimum in χ^{2} - if you move out of it, χ^{2} increases, so M must have only positive EVs
■ decompose $M=L L^{T}$ with $L=\left(\begin{array}{cccc}l_{11} & 0 & \ldots & 0 \\ l_{21} & l_{22} & \ddots & \ldots \\ \vdots & * & \ddots & 0 \\ l_{n 1} & l_{n 2} & \ldots & l_{n n}\end{array}\right)$
■ consider related $M=\bar{L} D \bar{L}^{T}$ with $D=\operatorname{diag}\left(l_{11}^{2}, \ldots, l_{n n}^{2}\right)$ and $\bar{l}_{i j}=\frac{l_{i j}}{l_{i i}}$

- EVs are zeroes of characteristic polynomial $\operatorname{det}|\bar{L}-\lambda 1|$
- they're all $1 \rightarrow \kappa=1$

■ Cholesky decomposition is numerically stable

Cholesky decomposition

■ Cholesky decomposition can use packed matrix storage - only save the diagonal and below (blue, in reading order):

- $M=\left(\begin{array}{cccc}m_{00} & m_{10} & \ldots & m_{n 0} \\ m_{10} & m_{11} & \ldots & m_{n 1} \\ \vdots & * & \ddots & \vdots \\ m_{n 0} & m_{n 1} & \ldots & m_{n n}\end{array}\right)$

■ only need to update about half the amount of memory when adding measurements to the fit

- for e.g. a 64 parameter fit, that's reading and writing about 16 kiB of RAM instead of 32 kiB for each measurement
■ how to use this in your code?

```
#include <Math/CholeskyDecomp.h> // from ROOT
// use packed matrix storage { m00, m10, m11, ...}
// matrix element ij can be found at index (i * (i + 1)) / 2 + j
std::vector<double> mat = get_packed_mat();
std::vector<double> rhs = get_rhs();
unsigned nparams = rhs.size();
CholeskyDecompGenDim<double> decomp(n, mat.data());
if (!decomp) throw std::runtime_error("matrix not positive definite");
decomp.Solve(rhs);
// rhs now contains the solution p of mat * p = rhs
// if you need the covariance:
// decomp.Invert(mat.data()); // mat now contains covariance
```


track parameter correlation studies (Hasret Nur)

■ What can we do with this fitting framework?
■ Hasret will study track models in the Mighty Tracker
■ in the past, used this model in main tracker ${ }^{1}$:

$$
\begin{gathered}
d z=z-z_{0} \\
x(d z)=(((1+d \text { Ratio } \cdot d z) \cdot c) d z+b) d z+a \\
y(d z)=b^{\prime} \cdot d z+a^{\prime}
\end{gathered}
$$

■ idea: fit MCHits of (MC) particles in $x z$ and $y z$ projection with polynomials
■ dump resulting parameters to tuple, study correlations
■ with the excellent resolution of a pixel tracker, model above may no longer be sufficient

- Hasret will study what the best parametrisation is
${ }^{1}$ please evaluate polynomials like this (Horner's scheme) - very CPU efficient, and many CPUs have a specialized instruction $\mathrm{fma}(\mathrm{b}, \mathrm{dz}, \mathrm{a})=b \cdot d z+a$ (fused multiplz add).

Chebyshev polynomials

■ definition: $(x \in[-1,1])$

$$
T_{0}(x)=1 \quad T_{1}(x)=x \quad T_{n}=2 x T_{n-1}(x)-T_{n-2}(x)
$$

or

$$
T_{n}(x)=\cos (n \arccos (x))
$$

■ fast: for fixed x , can evaluate with 1 or 2 floating point operations per order n
■ these are orthogonal:

$$
\int_{-1}^{1} T_{j}(x) T_{k}(x) \frac{d x}{\sqrt{1-x^{2}}}= \begin{cases}0 & j \neq k \\ \frac{\pi}{2} & j=k \neq 0 \\ \pi & j=k=0\end{cases}
$$

or

$$
\sum_{l=0}^{N} T_{j}\left(x_{l}\right) T_{k}\left(x_{l}\right)= \begin{cases}0 & j \neq k \\ N & j=k=0 \\ \frac{N}{2} & j=k \neq 0\end{cases}
$$

$$
\left(x_{l}=\cos \left(\frac{l \pi}{N}\right)\right)
$$

Chebyshev polynomials

- approximate $f(x) \approx \sum_{k=0}^{n} c_{k} T_{k}(x)$
- Chebyshev polynomials intimately related with Fourier transforms
\rightarrow fast convergence for well behaved functions
■ best of all: error estimates are easy: $\left|T_{k}(x)\right| \leq 1$
\rightarrow accurate error estimate from summing up first few neglected $\left|c_{k}\right|$

example: Chebyshev-expanded OT walk relation

■ need to correct for time walk in OT, depends on length l of hit along anode wire

■ parameters for walk correction come from conditions DB
■ calculate Chebyshev expansion on the fly in run $1 / 2$ software
■ can truncate after c_{4} (e.g. with parameter's from Alexandr Koslinsky's thesis): $c_{0}=-0.116724, c_{1}=0.544860, c_{2}=-0.290254, c_{3}=0.196250, c_{4}=-0.110068$

est. error: 0.0788 ns (scanning shows max. deviation $<0.0676 \mathrm{~ns}$)
■ notice how well-behaved the approximation error is $\left(\left|T_{k}(x)\right| \leq 1\right)$

track propagator approximations

■ let's put the pieces together
$■$ write tuple: generate state vectors $(x, y, t x, t y, q / p)$ at fixed z thanks Renato for the tuples and code
■ propagate through magnetic field to different z locations
■ use approximate symmetry of LHCb to fit only one quadrant:
$■$ if $x_{T}<0: x \rightarrow-x, t x \rightarrow-t x, q / p \rightarrow-q / p$
\square if $y_{T}<0: y \rightarrow-y, t y \rightarrow-t y$
■ fit $p \in x, y, t x, t y$ with multi-dimensional Chebyshev series, e.g.

$$
p_{\text {VeloExit }}=\sum_{i, j, k, l, m} p_{i j k l m} T_{i}\left(x_{T}\right) T_{j}\left(y_{T}\right) T_{k}\left(t x_{T}\right) T_{l}\left(t y_{T}\right) T_{m}\left((q / p)_{T}\right)
$$

- $p_{i j k l m}$ are the fit parameters
- I am suppressing the linear transformation that brings the track parameter ranges to the $[-1,+1]$ interval for the Chebyshev polynomials

tuple number 1

- all initial states at the origin, flat distribution in tx and ty (100 steps from -0.4 to 0.4)
■ flat in $q / p(200$ steps from $1 /(100 \mathrm{GeV})$ to $1 /(500 \mathrm{MeV})$), both charges
■ then propagate through magnetic field to these values in z ([mm]):
■ 770 (VeloExit)
■ 2307, 2313, 2322, 2328, 2362, 2368, 2377, 2383, 2586, 2592, 2601, 2608, 2641, 2647, 2656, 2663 (UT layers, last one UTExit)
- 5240 (somewhere near the middle of the magnet)
- 7500, 8520, 9410 (BeginT, MidT, EndT)

■ 1.6 M propagated states (many states do not reach T)
■ idea here is to focus on essentially prompt tracks - the q/p estimate we use to get the q / p for a T track segment has that assumption built in anyway

from $z_{\text {MidT }}$ to $z_{\text {VeloExit }}$

$t x$

$t y$

■ for $p>3 \mathrm{GeV}$, get RMS of $1.2 \mathrm{~mm} / 1.0 \mathrm{~mm} / 1.5 \cdot 10^{-3} / 1.3 \cdot 10^{-3} \mathrm{in}$ $x / y / t x / t y$

■ not perfect, but real tracks have multiple scattering - likely good enough...
$■$ include Chebyshev up to first order in $x, y, t x, t y$, and up to fifth order in q / p
■ 2 * 2 * 2 * 2 * 6 = 96 fit parameters
■ can do 16 fits w. 96 parameters on 1.6 M tracks in less than a neutron lifetime
■ can evaluate at throughput greater than 1.5 Mtracks/s on single core of 13 year-old laptop

from $z_{\text {MidT }}$ to $z_{\text {UTExit }}$

■ for $p>3 \mathrm{GeV}$, get RMS of $4.0 \mathrm{~mm} / 3.4 \mathrm{~mm} / 1.5 \cdot 10^{-3} / 1.3 \cdot 10^{-3} \mathrm{in}$ $x / y / t x / t y$

- not perfect, but real tracks have multiple scattering - likely good enough...
$■$ include Chebyshev up to first order in $x, y, t x, t y$, and up to fifth order in q / p
■ 2 * 2 * $2 * 2 * 6=96$ fit parameters
■ less good than the Velo one on the last page (pointing constraint weaker, \vec{B} field starts to act!)

tuple number 2

■ all initial states at $z_{\text {EndT }}$

- use $\mathrm{N}=50$

■ try out Chebyshev-based spacing of points:
$\frac{\text { max }+ \text { min }}{2}+\frac{\text { max }-\min }{2} \cos \left(\pi \frac{2 k+1}{2 N}\right)$ for $k=0, \ldots, N-1$
■ x : $\min =0 \mathrm{~mm}, \max =3200 \mathrm{~mm}$; add mirror to add the other half of detector

- $\mathrm{y}: \min =0 \mathrm{~mm}, \max =2800 \mathrm{~mm}$; add mirror to add the other half of detector
- tx: $\min =-0.8, \max =0.8$
- ty: $\min =-0.4, \max =0.4$
- q/p: $\min =-0.002, \max =0.002$

■ propagate to same z values as last tuple
■ idea here was to optimize for potentially non-prompt tracks, if we manage to pull out the correct pair of Velo segment and T segment

from $z_{\text {VeloExit }}$ into UT

- parametrise in $\left(x, y, t x, t y, q / p, z_{U T}\right)^{T}$
$■$ for $p>3 \mathrm{GeV}$, get RMS of $0.43 \mathrm{~mm} / 0.35 \mathrm{~mm} / 1.4 \cdot 10^{-3} / 6.3 \cdot 10^{-5}$ in $x / y / t x / t y$
■ include Chebyshev up to first order in $x, y, t x, t y, z_{U T}$, and up to second order in q / p
■ $2 * 2 * 2 * 2 * 3 * 2=96$ fit parameters

summary

■ approximations can propagate a state vector through magnetic field

- fairly low-order approximations can do a reasonable job predicting positions and slopes
- they do so with relatively little CPU

■ idea: use approximations to match tracks at the end of Velo, and find hits in UT

- a KD tree is the data structure to use (see Arthur's talk or backup)

■ finds nearby tracks in parameter space

- like std::sort and search windows, but in more then 1 dimension
- needs $\mathcal{O}(N \log N)$ work to build the tree, and $\mathcal{O}(\log N)$ work to get nearest neighbour(s) in parameter space
- could also be useful to find hits nearby in position and time (timing subdetectors?)
- Renato will report on how well the matching works

summary

■ open questions
■ I am not at all sure these are the optimal parametrisations

- up to which orders?

■ which granularity? (approximating a whole quadrant is maybe a bit crazy)
■ how to best generate the tuples for fitting (best distribution in track state space for fitting)
■ could imagine that, one day, we use such parametrisations to propagate all tracks (instead of referring to the field map)...

■ fits linear in track parameters are fairly powerful
■ I hope it's your new secret superpower!

- not only useful for pattern reco problems

■ probably should be used far more widely
■ code is on gitlab (fitter code <1700 lines of $C++$ incl. comments!)
■ feel free to take a look, maybe learn from, and to play with approximations

backup

backup

recap: efficient hit finding

■ we're all familiar with the std:: sort/std::lower_bound combo:

```
auto firstHit = hitsInLayer.begin(), lastHit = hitsInLayer.end();
std::sort(firstHit, lastHit, [] (auto xa, auto xb) { return xa < xb; });
for (const auto& s: seeds) {
    const auto dz = layerZ - s.z();
    // predict coordinate in new layer
    const auto x = s.x() + x.xSlope() * dz;
    // open up a search window
    const auto xcov = s.CovX() + dz * (2. * s.xCov() * s.xSLCov() + dz * s.xSlCov());
    const auto xerr = std :: sqrt(xcov);
    const auto xmin = x - 3. * xerr, xmax = x + 3. * xerr;
    // loop over corresponding hits in region of interest
    for (auto it = std:: lower_bound(firstHit, lastHit, xmin,
            [] (auto xa, auto xb) { return xa < xb; });
            lastHit != it && it ->x() < xmax; ++it) {
        const auto& h = *it;
        // do something to seed s and compatible hit h
    }
}
```

■ well known technique, $O(N \log N)$ work for sort, $O(\log N)$ work for lower_bound
■ great for cases where we have a single coordinate, not so good in two/more dimensions
■ can we generalise?

recap: binary search trees

The std::sort/std::lower_bound trick works because it builds a balanced binary search tree...

kd trees

■ a kd tree is a straightforward extension of that idea

- recursively pick median of "bag" or sub-array as in example above
- cycle through the dimensions

■ searching is based on the same idea as lower_bound, but sometimes needs to check the other subtree on its way up towards the root, as there is more than one dimension

■ wait, can we have an example?

kd trees: building a 2d tree (1/4)

start with some points in 2D...

kd trees: building a 2d tree (2/4)

...find median along one axis, promote to tree node ${ }_{5}$,

kd trees: building a 2d tree (3/4)

...find median in subsets along next axis (cyclically), promote to tree

kd trees: building a 2d tree (4/4)

...and continue until the whole tree is built.

kd trees: code example (1/2)

■ whereas the std:: sort/std::lower_bound trick only needed the comparison functor, kd trees need

■ comparison of items along named axis ($x / y / \ldots$)
■ distance functor (or monotonic function of distance)
■ code example using single-header package kdtree

```
using point = std::array<float, 2>; // 20 points
const auto cmp = [] (const point& a, const point& b, auto dim) noexcept {
    return a[dim] < b[dim]; };
const auto dist = [] (const point& a, const point& b, auto dim) noexcept {
        if (std :: size_t(-1) == dim) { // full distance
            // a point is not it's own nearest neighbour (depends
            // on application if you want this ...)
            if (&a == &b) return std :: numeric_limits<float> ::max();
            // full distance between points - we use squared distance
            // here to save a square root
            return (a[0] - b[0]) * (a[0] - b[0]) +
                (a[1] - b[1]) * (a[1] - b[1]);
        } else { // distance in coordinate dim only
            return (a[dim] - b[dim]) * (a[dim] - b[dim]);
        }
    };
```

■ with these two helper functions, we can now find nearest neighbours in k dimensions...

kd trees: code example (2/2)

■ we can now build a kd tree, and find point closest to a given point:

```
// okay, get some points from somewhere:
using Points = std ::vector<point>;
Points v = /* from somewhere ... */;
// build kd tree
build_kdtree<2>(v.begin(), v.end (), cmp);
// find nearest neighbour to a point
const auto& p = *(v.begin() + 42); // some element - need not be one from v
auto nearest = find_nearest_kdtree<2>(v.begin(), v.end (), p, cmp, dist);
std::cout < "nearest is (" < (*nearest)[0] < "," < (*nearest)[1] < ")"
    << std::endl;
```

- can also find more than one nearest neighbour:

```
// pair of iterator (to neighbour), and its distance to a point
using NeighbourWithDistance = std::pair<Points ::iterator, float>;
// array of five of these
using FiveBest = std::array<NeighbourWithDistance, 5>;
// prepare an array, fill with "nothing found"
FiveBest best;
best.fill(std::make_pair(v.end(), std :: numeric_limits<float> ::max ()));
// find the five nearest neighbours to p
find_n_nearest_kdtree<2>(v.begin(), v.end(), p, best.begin(), best.end(),
    cmp, dist);
for (const auto& n: best) {
    std::cout << "near neighbour is (" < (*n.first)[0] < ","
        < (*n.first)[1] < ") dist" < n.second < std::endl;
}
```


conclusion

■ kd trees allow
■ $O(\log N)$ searching for nearest neighbour(s) in k dimensions

- need $O(N \log N)$ work to build kd tree initially

■ if you want to play: a simple C++ version is available in the kdtree package
■ possible areas of application
■ building block for tracking in pixel detector

- matching tracks based on track parameters
- tracking in detectors that supply hit time information
- ...(your idea here)

■ I hope to get people thinking, and am willing to answer questions, and help, but probably won't have time to work on something myself

