Tracking results in PbPb and pp collisions for Upgrade II UT Geometries

LHCb Upgrade II Tracking Workshop 07/03/2024

Carlos Barbero

Motivation

- <u>Study the UT tracking performance</u> in PbPb and pp collisions for the Upgrade II scenarios: 4 different geometries of the UT.
- > We use a framework that give us the flexibility to change things that in the LHCb software would not be easy to handle (LHCbIDs with new detectors, definition of reconstructible, ...)

> The main code has been developed by *Renato Quagliani*.

The code was thought to be used in pp collisions but It can be used in heavy ions collisions with some modifications.

MC sample

Start with a simulation file (.sim file)

- Make the tuples (.root file)
 - Position: (x,y,z)
 - Time: t
 - Energy
 - Vertices
 - MC Particles
- It is possible to change the geometry of the detectors (reduction mode)

PbPb Sample

- PbPb sample of run3 detector geometry
- > PbPb central collision simulation (Pythia): 5% centrality
- \succ $\mathcal{L} = 1 \text{ coll/evt}$
- 5 events

pp Sample

- > pp sample of run3 detector geometry
- > $\mathcal{L} = 1.3 \cdot 10^{34} \, cm^{-2} s^{-1}$

Cheated Algorithm

- Smear the simulated hits
- Classify the hits depending on the original track they come from
- Make the the reconstructed track with hits from the <u>same MC track</u>. Parabola model in x and linear model in y.
 - This algorithm gives us an upper limit for performances.
 - Inefficiencies come from bad fits.

Standalone Algorithm

- Pick a hit in station 1
- > $|\Delta \rho|/|\Delta \phi|$ search windows in station 2 to 4 + slope windows.
- Make all the combinations of candidate hits in station 2 to station 4.
- Fit with a parabolic (linear) model in x (y) and keep the best track candidate.
 - Make the fit if there are at least 3 hits.
 - Remove used hits.
- Second pass with the remaining hits in station 1.

Settings

➤ Smearing:

"UT" : "x_pitch_size" : 0.030, "y_pitch_size" : 0.030, "hiteff" : 0.98

Reconstructible criteria:

"hasUT" (cheated) >= 3 "hasUT" (standalone) >=3

Geometry: (for UT detector)

- Baseline
- Hole
- $\circ \quad \text{ No Border}$
- 3 Stations

Standalone fit

"chi2 ndofmax": 1000. "delta rho": "st1 st4": 3 * 13.458240 "st1 st2": 3 * 29.693831 "st2 st3": 3 * 13.176463 "st3 st4": 3 * 33.882427 "delta_tx": 0.15 "delta ty": 0.15 "delta phi": 0.02 "fit bounds low": [-10000,-8.,-0.00015] "fit_bounds_high": [10000,8.,0.00015]

UT Geometries

No Border

3 Stations

Complete acceptance of the detector

Remove a row of pixels around the beam hole

Remove a row of pixels along the border

Remove the first Station of the detector

Preliminary results: Efficiencies and Ghost rates

standalone baseline

UT Tracks PrChecker					
Category	# Recoed / # Recoble	Efficiency (%)	Clones (%)		
HasVelo (all) (!e) HasVelo (all) HasVelo (all), eta>0 HasVelo (all), eta<0 HasVelo (all), eta[2,5] HasVelo (all), eta[2,5], p > 5 GeV	3317 / 18175 3061 / 15846 3317 / 11587 0 / 6588 3316 / 8490 2193 / 3713	18.25 % 19.32 % 28.63 % 0.00 % 39.06 % 59.06 %	0 (0.00 %) [nTotMatch = 3317]) 0 (0.00 %) [nTotMatch = 3061]) 0 (0.00 %) [nTotMatch = 3317]) nan 0 (0.00 %) [nTotMatch = 3316]) 0 (0.00 %) [nTotMatch = 2193])		
HasUT (all) (!e) HasUT (all) HasUT (all), eta[2,5] HasUT (all), eta[2,5], p > 5 GeV Long (all)	4000 / 14931 3280 / 8092 3996 / 12012 2453 / 3253 2611 / 4628	26.79 % 40.53 % 33.27 % 75.41 % 56.42 %	<pre> 0 (0.00 %) [nTotMatch = 4000]) 0 (0.00 %) [nTotMatch = 3280]) 0 (0.00 %) [nTotMatch = 3996]) 0 (0.00 %) [nTotMatch = 2453]) 0 (0.00 %) [nTotMatch = 2611]) </pre>		
Long eta[2,5] Long eta[2,5], p>5GeV LongUT (all) LongUT eta[2,5] LongUT eta[2,5], p>5GeV	2610 / 4216 1856 / 2643 2611 / 3940 2610 / 3870 1856 / 2329	61.91 % 70.22 % 66.27 % 67.44 % 79.69 %	<pre> 0 (0.00 %) [nTotMatch = 2610]) 0 (0.00 %) [nTotMatch = 1856]) 0 (0.00 %) [nTotMatch = 2611]) 0 (0.00 %) [nTotMatch = 2610]) 0 (0.00 %) [nTotMatch = 1856]) </pre>		
<pre>(!e) Long (Pix-Pix) (!e) Long (Pix-Pix), eta[2,5] (!e) Long (Pix-Pix), eta[2,5], p>5GeV (!e) LongUT (Pix-Pix) (!e) LongUT (Pix-Pix), eta[2,5] (!e) LongUT (Pix-Pix), eta[2,5], p>5GeV</pre>	1536 / 2381 1535 / 2125 1330 / 1796 1536 / 1834 1535 / 1828 1330 / 1513	64.51 % 72.24 % 74.05 % 83.75 % 83.97 % 87.90 %	<pre> 0 (0.00 %) [nTotMatch = 1536]) 0 (0.00 %) [nTotMatch = 1535]) 0 (0.00 %) [nTotMatch = 1330]) 0 (0.00 %) [nTotMatch = 1536]) 0 (0.00 %) [nTotMatch = 1535]) 0 (0.00 %) [nTotMatch = 1330]) </pre>		
 # Events 10	# Recoed Tracks 4145	# Fake Tracks 145	Ghost Rate 3.50 %		

HasUT (all) (2<η<5, p>5 GeV) & Ghost rates

Pixel size comparison

Efficiencies PbPb : cheated algorithm

Efficiencies pp : cheated algorithm

12

Summary

- The density of hits in the peripheral region of the UT is very low. Remove this region hardly affects the results.
- Remove the central region of the UT (higher density of hits) drops the ghost rate but this also results in a drop of the efficiency.
- > The 3 Station geometry is the worst-case scenario we have in terms of efficiency and ghost rate (specially for PbPb) using the actual standalone algorithm.
- > The pixel size matter (specially for PbPb). Reduce the size of the pixels result in a grow of the efficiency and a drop of the ghost rate.

TODO list

- Include more statistics to improve our results.
- > Compute the results testing new pixel size (55μ mx150 μ m).
- > Optimize and improve the UT standalone algorithm
- > Develop other tracking algorithms: VeloUT and DownStream algorithms.

Thanks for your attention!

BACKUP

HasUT (all) (2<η<5, p>5 GeV) & Ghost rates

PbPb (1evt)	Baseline	Hole	No Border	3 Stations
Cheated	Eff: 78%	Eff: 73%	Eff: 78%	Eff: 84%
	G.R.: 0%	G.R.: 0%	G.R.: 0%	G.R.: 0%
Standalone	Eff: 75%	Eff: 52%	Eff: 74%	Eff: 53%
	G.R.: 3%	G.R.: 1%	G.R.: 4%	G.R.: 50%

pp (10 evts)	Baseline	Hole	No Border	3 Stations
Cheated	Eff: 79%	Eff: 72%	Eff: 78%	Eff: 85%
	G.R.: 0%	G.R.: 0%	G.R.: 0%	G.R.: 0%
Standalone	Eff: 75%	Eff: 58%	Eff: 75%	Eff: 76%
	G.R.: 3%	G.R.: 4%	G.R.: 3%	G.R.: 20%

Pixel size comparison

PbPb (1evt)	Baseline	Hole	No Border	3 Stations
Standalana	Eff: 75%	Eff: 52%	Eff: 74%	Eff: 53%
30µmx30µm pix	G.R.: 3%	G.R.: 1%	G.R.: 4%	G.R.: 50%
Ctandalana	Eff: 72%	Eff: 52%	Eff: 71%	Eff: 45%
55µmx55µm pix	G.R.: 9%	G.R.: 5%	G.R.: 9%	G.R.: 60%

pp (10 evts)	Baseline	Hole	No Border	3 Stations
Standalona:	Eff: 75%	Eff: 58%	Eff: 75%	Eff: 76%
30µmx30µm pix	G.R.: 3%	G.R.: 4%	G.R.: 3%	G.R.: 20%
Standalana	Eff: 75%	Eff: 60%	Eff: 75%	Eff: 73%
55µmx55µm pix	G.R.: 6%	G.R.: 6%	G.R.: 6%	G.R.: 27%

Efficiencies PbPb : cheated algorithm

Baseline

Hole

No Border

3 Stations

Efficiencies PbPb : standalone algorithm

Baseline

Hole

No Border

3 Stations

Efficiencies pp : cheated algorithm

Hole

3 Stations

Efficiencies pp : standalone algorithm

