
Kalman Filter, magnetic field mapping, etc 
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•  Kalman Filter using the weight/information formalism 
  -  simpler and more intuitive: avoiding problems with big values 
  -  tool to predict the errors of reconstructed track (cf Renato’s work) 
  -  extension to prediction of sensitivity to individual measurements 
  -  tool to make projections or changes of geometry 
  -  possible simplifications (« what matters » principle) 
 
•  Magnetic field map: 
   -  using triplets of polynomials for Bx,By,Bz obeying Maxwell equations  
   -  completing the measurements with « peripheric » permanent probes ? 
    
•  Correlations between magnetic corrections and alignment 
   -  evidence 
   -  possible solution with a  joint fit of align. param. and magnetic correction ? 
   -  correction a posteriori (complement to the corrections « à la Needham ») 
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basic tool for track fitting : �
Kalman Filter (progressive fitting method)


found in many textbooks… (here : Wikipedia) 

+ even more complicated expression for the “smoothing” 
 
we will present something equivalent (and hopefully more 
intuitive !)  and try to go further 
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gaussians in nD space

G(x) = K exp (− Σ Wij (xi−µi) (xj−µj)/2)      K2 = det(W)/(2π)n 
covariance matrix  C = W−1 
 

combining gaussians: 
 
product:  (µ1,W1) . (µ2,W2)  ! (W1+W2) −1.(W1µ1+W2µ2)   ,  W1+W2 
(combining independent informations:  addition of  weight matrices) 
the new center is a « barycenter with matricial weights »   
 
convolution:  (µ1,W1) * (µ2,W2)  ! µ1+µ2  , (W1

−1+W2
−1) −1 

 (combining independent biases: addition of covariance matrices) 

1σ contours 
 
quantitatively: 
information = 1/area 
(1/volume in nD) 

G1.G2 G1*G2 

G1 

G2 
G2 

G1 
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•  if W has rank < 5, the « barycenter » is degenerate: no problem ! 
•  the « smoother is just a local interpolation: combination of a forward and a 

backward filter and a forward one, both up to this point 
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a  problem with the standard Kalman Filter 
(work with Dorothea) 

trying to implement the Kalman Filter included in PrPixelTracking (Velo) 
in single precision on a GPU:  
 
•  discrepancies between the GPU and the CPU results, and between them and 

the weight/information algorithm, when applied to the same data 
 
•  more precisely: the discrepancies (on fitted position/slope, covariance 

matrix, chi2)  decrease with the number of points in the track 
 
•   agreement between all versions in double precision, and between single and 

double with the weight algorithm 
 
•  the discrepancies increase with the initial value given to cov(Tx,Tx) and 

cov(Ty,Ty) at the beginning of the loop on points  

Evian workshop 
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the origin of the problem 

Evian workshop 

at first point Cxx= σ2, CTxTx= Big 
    (in this code: Big = 1) 
the loop (pred, upd, noise) begins 
at the second point with a nearly 
singular predicted covariance : 
C’ xx= σ2+Big2Δz2 
C’ xTx= Big Δz  , C’TxTx= Big 
the « gain » business mixes Big 
and real quantities ! rounding 
errors ! 
 
here: making Big ! ∞ in the 
results after updating at point 2: 
x = x2          Tx = (x2-x1)/Δz 
cov = (σ2, σ2/Δz, 2σ2/Δz2) 
χ2 = 0 
 the KF machinery was useless ! 
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simple solution 
with the first two points: simple straight line fit, without noise

linear system, with wk= 1/σk

2:


 Σwk      Σwkzk        X              Σwkxk

meas



 Σwkzk  Σwkzk
2     Tx        Σwkzkxk

meas






this is exactly equivalent to the limit obtained with Big !∞"


then: begin the KF machinery after including the second point 

•  add the noise

•  propagate to next point (prediction)

•  add the next point and increment χ2 

etc…

 

no precision problems in the next steps (the covariance matrices 
does not include artificial terms)

the standard machinery may be used safely with everything in 
‘float’
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weight matrix information vector state 

= 
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projecting and changing geometry 

track 

measurement plane state plane  

to be included in the KF, the 
measurement error in an oblique plane 
is projected  onto the state plane along 
the local track direction 

x 

y 

X 

Y a measurement (X,σX) in 
an oblique detector is 
projected onto the state 
plane along the local 
track direction as a 
virtual measurement of 
αx+βy in the state plane. 
α, β and the projected 
error depend on the 
geometry of both the 
planes and the track 

track 
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sensitivity to individual measurements 

linear approximation around the reference trajectory: 
the KF is a squence of linear operations on the state vector 
each measurement contributes linearly to the fitted sate 
! at any step, the fitted parameters (deviations from reference) 

depend linearly on  the measurements previously included 
! one can compute a « matrix of sensitivity » of parameters to 

measurements 

possible applications: 
-  estimate « what matters » for a given physical purpose  
-    sensitivity of the fitted parameters to misalignments  
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fitting an magnetic field map  
with triplets of polynomials (Bx, By, Bz) 

satisfying the Maxwell equations 

-  H.Wind (master of  the sixties) 
     polynomials classified by degrees and parities in x,y,z  (J. of Comput. Phys.(1968) 
     combinations of products of trigo/hyperbolic functions (NIM A 89 (1968) 

-  Another construction of polynomials based on spherical harmonics 
div(B) = 0  and curl(B) = 0 is equivalent to: 
B = grad(Φ)  with Φ harmonic 
rl Ylm(θ,φ) is harmonic and polynomial of degree l in x,y,z coordinates 
!  taking the real and imaginary parts gives a solution with defined parities in x,y,z 

(useful to constrain the solution to symmetries of the system) 
 
more advanced: use large degrees for the « regular » components (expected 
symmetries), and low degrees for « irregular » ones (perturbations supposed to be 
small)  
 
note: the LHCb field is too complex to be globally fitted with a reasonable degree  
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measurement zone


the measurement zone does not fully cover the region of interest: 
extrapolation procedure in both LHCb-INT-2012-012 and  LHCb-INT-2015-034:  
global displacement (translation+rotation) + scaling factor 
fits well to the data within the measurement zone, but no guarantee to match the remaining 
space  
within technical constraints: can we extend the zone at large z (up to ~8000) ?

 
another problem when computing the new map on the grid: abnormal fluctuations for large |
y/z|  (especially on the top edge); due to interpolation procedure ? 
 

magnetic field map measurements in 2010 and 2014


region of interest


spacing of field lines prop. to 1/intensity  
 

2014
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how to obtain a more exhaustive evaluation ? 

•  the « regular » components may be computed from the description of the 
magnet 

•  the measurements suggest that there are perturbations (with left/right and top/
down asymmetries) 

•  it is impossible to make an exhaustive description of all potentially magnetic 
materials in the environment 

  
if the (small) irregular component is due to remote elements, it is probably smooth 
within the geometrical domain of the tracking detectors: it could be described by 
low degree Maxwell-compatible polynomials 
 
a set of  Hall probes around this domain could give an input for such a fit 
another possible advantage: providing a « slow control » of the field (long term 
evolution and reactions to changes of polarity)    
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building a « projective » map ?

(cf talk of june 2016)


for any point along physical trajectories: interpolation from points inside the acceptance 
no pollution from external points, no artificial fluctuations 

denser grid in strong field region 
with large gradients  
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 an example of correlation between field and alignment 

Evian workshop 

•  changing By is partially compensated by opposite displacements of the 
half chambers along x axis 

•  if no separate degrees of freedom: partial compensation by a translation 
along z axis 

•  more generally: there are correlations between field distortions and 
geometrical displacements 

•  the alignment parameters may depend on the selected momenta 
how to disentangle the sources of deviations ? 

By 
q<0 

q>0 
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a “possible” mathematical solution 

P.B.  NIM A 902 (2018) 33-44 

principle:  
fitting at the same time field corrections (e.g. coefficients of Maxwell-
compatible polynomials) and alignment parameters on a large set of 
tracks with various momenta and trajectories to disentangle the 
dependences 
 
toy model: two blocks of detectors (upstream/downstream) with 6 
relative alignment parameters (translation+rotation) 
 
good results, but did not work when applied on real data (more complex 
internal alignment needed in each block ?) 
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less demanding: extended correction of momentum scale 
 

correction of momenta a posteriori to account for   
1)  field map deviations  
2)  misalignments 

point 1) is addressed in 024 JINST 19 p02008 (à la Needham) 
principle: for a given direction, a field discrepancy results in a modification of the 
momentum scale, reflected in the invariant mass of  X !	m+ m− decays 
(assuming that both daughters are roughly the same domain in (tx,ty))  

point 2) possible extension: consider the momentum balance between m+ and m− 
 
ingredient: a misalignment results in a shift on q/p:  p is replaced  by p+εqp2 

where ε is the result of all misalignments along the (tx,ty) line 
 
simplified computation for massless daughters (similar qualitative result with masses) 
mX

2 = (p1+p1)2−(p1+p2)2  = 2p1p2(1−cos(p1.p2)) 
(p1+εp1

2) (p2−εp2
2)  = p1p2 (1+ε(p1−p2)) 

the shift is proportional to  p1−p2 
 
proposition: for a direction (tx,ty), evaluate the dependence on  p1−p2 in addition to a 
scale factor, and introduce a correction including this dependence 
 



2024/03/06 Evian workshop 18 



2024/03/06 Evian workshop 19 



2024/03/06 Evian workshop 20 



2024/03/06 Evian workshop 21 

linear problem with 2 parameters�
(movement with “noisy” speed)


initial conditions:  x0 , v0 (to be estimated) 
at each time step Δt : 
•   measurement of x (error εk , variance σ2) 
•   random variation ζk of vk (variance ρ2) 
•  displacement vk.Δt  
xk

mes
  = x0 + (v0+ ζ1) Δt + (v0+ ζ1 + ζ2) Δt  + …+ εk 

→ correlation (xk
mes, xj

mes) through the ζi 

x 

t 

x0 
v0 
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progressive fit: one step “on-the fly” �
in the (x,v) plane


x 

v 

previous measurements: 
state vector pk(xk,vk) 
cov. matrix Ck\ 
weight matrix Wk=Ck

-1 

propagation 
p’k (xk-vkΔt, vk) 
C’ = D.Ck

n.Dt 
                   1  -Δt  
                0   1 
 
W’ = (Dt)-1.Wk

n.D 

noise on v 
 Ck

n =  Ck+N 
           0    0 
           0    ρ2 
 
degraded 
information 
Wk

n = (Ck
n)-1 

N = 

combination with a new 
measurement  pk-1 
W’=(C’)-1 , Wk-1      [= ( Ck-1)-1  ?] 
(W’+Wk-1) p” = W’p’k+Wk-1pk-1  
C”(p”) = (W’+Wn)-1 
 information is gained 

D = 

22 
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parameterized propagation

idea: instead of using RK extrapolation for every track, precompute formulae to get a faster execution 
principle: 
-  chose a few reference surfaces that will contain « nodes » of the Kalman Filter.  
-  to go from the initial surface Σi to the final one Σf , express the state vector Sf on Σf through analytical of 

tabulated  functions of the components of the state vector Si on Σi 
 
guiding criteria 
-  at infinite momentum, the trajectory is a straight line 
-  so, we can try an expansion in powers of q/p of ΔSf , the difference between Sf and the straight line 

extrapolation 
-  the precision should be small compared to the other sources of error (mainly multiple scattering) 
-  the phase space may be reduced for trajectories close to the origin (particles for physics analysis) 
 
first example in the « endcap » description (x, y, tx, ty, q/p at fixed z): propagate from  zi=0 to zf 
- tx and ty are bounded by the acceptance ; 
- xi and yi are small, so terms at first order in xi,yi are sufficient 
 
 
 
 
 
 

0 
zf xi 

xf 

txi 

txf aim: express xf , yf , txf , tyf , as functions of  xi , yi , txi , tyi , q/p  



