

gaussians in nD space

$\mathrm{G}(\mathbf{x})=\mathrm{K} \exp \left(-\Sigma \mathrm{W}_{\mathrm{ij}}\left(\mathrm{x}_{\mathrm{i}}-\mu_{\mathrm{i}}\right)\left(\mathrm{x}_{\mathrm{j}}-\mu_{\mathrm{j}}\right) / 2\right) \quad \mathrm{K}^{2}=\operatorname{det}(\mathrm{W}) /(2 \pi)^{\mathrm{n}}$ covariance matrix $\mathrm{C}=\mathrm{W}^{-1}$
combining gaussians:
product: $\left(\boldsymbol{\mu}_{1}, \mathrm{~W}_{1}\right) \cdot\left(\boldsymbol{\mu}_{2}, \mathrm{~W}_{2}\right) \rightarrow\left(\mathrm{W}_{1}+\mathrm{W}_{2}\right)^{-1} .\left(\mathrm{W}_{1} \boldsymbol{\mu}_{1}+\mathrm{W}_{2} \boldsymbol{\mu}_{2}\right), \mathrm{W}_{1}+\mathrm{W}_{2}$ (combining independent informations: addition of weight matrices) the new center is a «barycenter with matricial weights»
convolution: $\left(\mu_{1}, \mathrm{~W}_{1}\right) *\left(\mu_{2}, \mathrm{~W}_{2}\right) \rightarrow \mu_{1}+\boldsymbol{\mu}_{2},\left(\mathrm{~W}_{1}^{-1}+\mathrm{W}_{2}^{-1}\right)^{-1}$ (combining independent biases: addition of covariance matrices)

weight matrix ("information") formalism

- state vector p (actually: deviation from reference traiectorv $\delta \mathrm{x} . \delta \mathrm{y}, \delta \mathrm{t}, \delta \mathrm{t}, \delta(\mathrm{q} / \mathrm{p})$)
- weight matrix $\mathrm{W}=\mathrm{C}^{-1}$ (if rank $=5 ; \mathrm{W}$ may have rank <5)
- propagation: $\mathrm{p}_{\text {propag }}=\mathrm{D} \cdot \mathrm{p} \quad \mathrm{W}_{\text {propağ }}=\left(\mathrm{D}^{-1}\right)^{\mathrm{T}} \mathrm{W} \cdot\left(\mathrm{D}^{-1}\right) \quad$ (D : jacobian matrix)

$$
(\mathrm{W}, \mathrm{p})_{\text {propag }}=\left(\mathrm{D}^{-1}\right)^{\mathrm{T}}(\mathrm{~W} \cdot \mathrm{n})
$$

- noise (mult. scatt.) : $\mathrm{W}^{\prime}=\left(\mathrm{W}^{-1}+\mathrm{S}\right)^{-1}=(1+\mathrm{W} \cdot \mathrm{S})^{-1} \cdot \mathrm{~W}$

$$
\mathrm{W}_{\text {uipd }}=\mathrm{W}_{\text {pried }}+\mathrm{W}_{\text {imieas }} \quad(\mathrm{W} \sim \mathrm{n})_{\text {upd }}=(\mathrm{W} \sim \mathrm{p})_{\text {pred }+}+(\mathrm{W} \sim \mathrm{p})_{\text {meas }}
$$

advantages:

- the meaning of operations is fully intuitive (e.g. addition of independent informations)
- all operations may be done whatever the rank of the W matrices no need to «regularize» covariance matrices when beginning the Filter. never need to solve a «singular 》 system: e.g., computing an interpolation/ extrapolation, updating a x^{2}, etc are requested only with < complete » states
- the « noise» step may be simplified if the matrix S is reduced to ($t_{\text {s.en }} t_{i}$) terms, e.g. $S=\operatorname{diag}\left(0,0, \varepsilon^{2}{ }^{2}, \varepsilon^{2}, 0\right)$ in the small angle approximation
- if W has rank < 5, the « barycenter » is degenerate: no problem!
- the «smoother is just a local interpolation: combination of a forward and a backward filter and a forward one, both up to this point

the origin of the problem

// compute the prediction
const float $\mathrm{dz}=$ zhit -z ;
const float predx $=\mathrm{x}+\mathrm{dz} * \mathrm{tx}$;
const float dz _t_covTxTx $=\mathrm{dz} *$ covTxTx;
const float predcovXTx $=\operatorname{covXTx}+\mathrm{dz}_{-} \mathrm{t}$ covTxTx;
const float dx t_covXTx $=\mathrm{dz} * \operatorname{covXTx}$;
const float predcovXX $=\operatorname{covXX}+2 * d x x_{-} \operatorname{covXTx}+\mathrm{dz} * d z_{-} \mathrm{t}_{-} \operatorname{covTxTx}$; const float predcovTxTx $=$ covTxTx;
// compute the gain matrix
const float $\mathrm{R}=1.0 /(1.0 /$ whit + predcovXX);
const float $K x=$ predcovXX $* R$;
const float $\mathrm{KTx}=$ predcovXTx $* \mathrm{R}$;
// update the state vector
const float $r=x h i t-p r e d x ;$
$x=\operatorname{predx}+K x * r$;
$t x=t x+K T x * r ;$
// update the covariance matrix, we can write it in many ways ...
covXX /*= predcovXX $-K x *$ predcovXX */ $=(1-K x) * \operatorname{predcovXX;~}$
covXTx $/ *=$ predcovXTx - predcovXX * predcovXTx $/ R * /=(1-K x) *$ predcovXTx;
covTxTx $=$ predcovTxTx - KTx $*$ predcovXTx;
// return the chi2
return $r * r * R$;

$$
\text { at first point } \mathrm{C}_{\mathrm{xx}}=\sigma^{2}, \mathrm{C}_{\mathrm{Tx} \mathrm{xx}}=\mathbf{B i g}
$$

$$
\text { (in this code: } \mathbf{B i g}=1 \text {) }
$$

the loop (pred, upd, noise) begins at the second point with a nearly singular predicted covariance :
$\mathrm{C}^{\prime}{ }_{\mathrm{xx}}=\sigma^{2}+\mathbf{B i g}^{2} \Delta \mathrm{z}^{2}$
$\mathrm{C}^{\prime}{ }_{\mathrm{xTx}}=\boldsymbol{\operatorname { B i g }} \Delta \mathrm{z}, \mathrm{C}^{\prime}{ }_{\mathrm{TxTx}}=\mathbf{B i g}$ the « gain» business mixes Big and real quantities \rightarrow rounding errors !
here: making Big $\rightarrow \infty$ in the results after updating at point 2 :
$\mathrm{x}=\mathrm{x}_{2} \quad \mathrm{Tx}=\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right) / \Delta \mathrm{z}$
$\operatorname{cov}=\left(\sigma^{2}, \sigma^{2} / \Delta z, 2 \sigma^{2} / \Delta z^{2}\right)$
$\chi^{2}=0$
the KF machinery was useless !

simple solution

with the first two points: simple straight line fit, without noise linear system, with $w_{k}=1 / \sigma_{k}^{2}$:

$$
\left.\begin{array}{ll}
\Sigma w_{k} & \Sigma w_{k} z_{k} \\
\Sigma w_{k} z_{k} & \sum w_{k} z_{k}^{2}
\end{array}\right]\left[\begin{array}{l}
x \\
T x
\end{array}\right]=\left[\begin{array}{l}
\sum w_{k} x_{k} \text { meas } \\
\sum w_{k} z_{k} x_{k}{ }^{\text {meas }}
\end{array}\right]
$$

weight matrix state information vector
this is exactly equivalent to the limit obtained with Big $\rightarrow \infty$
then: begin the KF machinery after including the second point - add the noise

- propagate to next point (prediction)
- add the next point and increment X^{2} etc...
no precision problems in the next steps (the covariance matrices does not include artificial terms)

2024/03/06
the standard machinery may be used safely with everything in 'float'

fast estimation of errors of track fit and sensitivity to individual measurements (without MC data)

standalone code with simplified geometric model (cf presentation of 2015, June 2)

- set of z-planes: position, thickness; if measurement; nature(x.y.stereo) and error
- uniform field along y between two planes; piecewise parabolic model in zx plane
- small $\left|t_{0}\right|$ and $\left|t_{y}\right|$ along the traiectory
(the framework could easily accent extensions of the last two conditions)

principle of the computation: perform a «stateless» Kalman Filter, doing the onerations (forward + backward + interpolations) on matrices, not on state vector
\rightarrow evaluate the covariance matrix on ($x, y, t, t, a / p$) at each point no need for explicit measured yalues in the planes
new feature: all KF operations are linear transformations of linear functions of the measurements \rightarrow on can compute also the sensitivity of the fitted quantities (including interpolations) to each individual measurement, hence the impact of accidental or systematic errors (e.g. misalianment)

sensitivity to individual measurements

linear approximation around the reference trajectory: the KF is a squence of linear operations on the state vector each measurement contributes linearly to the fitted sate
\rightarrow at any step, the fitted parameters (deviations from reference) depend linearly on the measurements previously included
\rightarrow one can compute a « matrix of sensitivity » of parameters to measurements
possible applications:

- estimate « what matters » for a given physical purpose
- sensitivity of the fitted parameters to misalignments

fitting an magnetic field map with triplets of polynomials (B_{x}, B_{y}, B_{z}) satisfying the Maxwell equations

- H.Wind (master of the sixties)
polynomials classified by degrees and parities in $\mathrm{x}, \mathrm{y}, \mathrm{z}$ (J. of Comput. Phys.(1968)
combinations of products of trigo/hyperbolic functions (NIM A 89 (1968)
- Another construction of polynomials based on spherical harmonics
$\operatorname{div}(B)=0$ and $\operatorname{curl}(\mathbf{B})=\mathbf{0}$ is equivalent to:
$\mathbf{B}=\boldsymbol{\operatorname { g r a d }}(\Phi)$ with Φ harmonic
$\mathrm{r}^{\mathrm{l}} \mathrm{Y}_{\operatorname{lm}}(\theta, \varphi)$ is harmonic and polynomial of degree 1 in $\mathrm{x}, \mathrm{y}, \mathrm{z}$ coordinates
\rightarrow taking the real and imaginary parts gives a solution with defined parities in $\mathrm{x}, \mathrm{y}, \mathrm{z}$ (useful to constrain the solution to symmetries of the system)
more advanced: use large degrees for the «regular» components (expected symmetries), and low degrees for «irregular» ones (perturbations supposed to be small)
note: the LHCb field is too complex to be globally fitted with a reasonable degree

how to obtain a more exhaustive evaluation?

- the «regular » components may be computed from the description of the magnet
- the measurements suggest that there are perturbations (with left/right and top/ down asymmetries)
- it is impossible to make an exhaustive description of all potentially magnetic materials in the environment
if the (small) irregular component is due to remote elements, it is probably smooth within the geometrical domain of the tracking detectors: it could be described by low degree Maxwell-compatible polynomials
a set of Hall probes around this domain could give an input for such a fit another possible advantage: providing a « slow control » of the field (long term evolution and reactions to changes of polarity)

a "possible" mathematical solution

P.B. NIM A 902 (2018) 33-44

principle:
fitting at the same time field corrections (e.g. coefficients of Maxwellcompatible polynomials) and alignment parameters on a large set of tracks with various momenta and trajectories to disentangle the dependences
toy model: two blocks of detectors (upstream/downstream) with 6 relative alignment parameters (translation+rotation)
good results, but did not work when applied on real data (more complex internal alignment needed in each block ?)

less demanding: extended correction of momentum scale

correction of momenta a posteriori to account for

1) field map deviations
2) misalignments
point 1) is addressed in 024 JINST 19 p02008 (à la Needham) principle: for a given direction, a field discrepancy results in a modification of the momentum scale, reflected in the invariant mass of $X \rightarrow \mathrm{~m}^{+} \mathrm{m}$ - decays (assuming that both daughters are roughly the same domain in $\left(\mathrm{t}_{\mathrm{x}}, \mathrm{t}_{\mathrm{y}}\right)$)
point 2) possible extension: consider the momentum balance between m^{+}and m^{-} ingredient: a misalignment results in a shift on q / p : p is replaced by $p+\varepsilon q p^{2}$ where ε is the result of all misalignments along the $\left(\mathrm{t}_{\mathrm{x}}, \mathrm{t}_{\mathrm{y}}\right)$ line
simplified computation for massless daughters (similar qualitative result with masses)
$\mathrm{m}_{\mathrm{X}}^{2}=\left(\mathrm{p}_{1}+\mathrm{p}_{1}\right)^{2}-\left(\mathbf{p}_{1}+\mathbf{p}_{2}\right)^{2}=2 \mathrm{p}_{1} \mathrm{p}_{2}\left(1-\cos \left(\mathbf{p}_{1} . \mathbf{p}_{2}\right)\right)$
$\left(\mathrm{p}_{1}+\varepsilon \mathrm{p}_{1}^{2}\right)\left(\mathrm{p}_{2}-\varepsilon \mathrm{p}_{2}^{2}\right)=\mathrm{p}_{1} \mathrm{p}_{2}\left(1+\varepsilon\left(\mathrm{p}_{1}-\mathrm{p}_{2}\right)\right)$
the shift is proportional to $\mathrm{p}_{1}-\mathrm{p}_{2}$
proposition: for a direction $\left(\mathrm{t}_{\mathrm{x}}, \mathrm{t}_{\mathrm{y}}\right)$, evaluate the dependence on $\mathrm{p}_{1}-\mathrm{p}_{2}$ in addition to a scale factor, and introduce a correction including this dependence

parameterized propagation

idea: instead of using RK extrapolation for every track, precompute formulae to get a faster execution principle:
chose a few reference surfaces that will contain « nodes» of the Kalman Filter.
to go from the initial surface Σ_{i} to the final one Σ_{f}, express the state vector \mathbf{S}_{f} on Σ_{f} through analytical of tabulated functions of the components of the state vector \mathbf{S}_{i} on Σ_{i}
guiding criteria

- at infinite momentum, the trajectory is a straight line
- so, we can try an expansion in powers of q / p of $\Delta \mathbf{S}_{f}$, the difference between \mathbf{S}_{f} and the straight line extrapolation
- the precision should be small compared to the other sources of error (mainly multiple scattering)
- the phase space may be reduced for trajectories close to the origin (particles for physics analysis)
first example in the « endcap» description ($x, y, t_{x}, t_{y} q / p$ at fixed z): propagate from $z_{i}=0$ to z_{f} $-t_{x}$ and t_{y} are bounded by the acceptance ;
- x_{i} and y_{i} are small, so terms at first order in $x_{i} y_{i}$ are sufficient

