

super-histograms: practical use-cases

Peter Fackeldey

IRIS-HEP

15.11.23

2 Histograms in a HEP analysis

- Dimensions of a typical histogram in a HEP analysis (1 quantity " m_{ll} "):
 - [hist.axis.StrCat] Dataset: O(1000) entries
 - [hist.axis.StrCat] Category: O(100) entries
 - [hist.axis.StrCat] Systematic: O(100) entries
 - [hist.axis.Variable] Variable: O(100) bins
- Total size is defined by the cartesian product: Dataset x Category x Systematic x Variable $\approx 10^9$ values \rightarrow 8 GB (double prec.)

Peter F. - 15.11.23

- Histograms become/are a bottleneck in terms of memory consumption for fullfledged HEP analyses!
- From my experience:
 - We had to split histograms up (e.g.: not every variable needs every systematic)
 → tree-like structure of individual histograms with *non*-contiguous data
 - We had to re-run the full analysis just to fill a different quantity of interest...
 ...re-running was fast, but it's far from ideal!

³ Sparsity

- Dimensionality reminder for 1 quantity:
 - [hist.axis.StrCat] Dataset: O(1000) entries
 - [hist.axis.StrCat] Category: O(100) entries
 - [hist.axis.StrCat] Systematic: O(100) entries
 - [hist.axis.Variable] Variable: O(100) bins
- Is this histogram sparse? Yes, just some examples:
 - No Systematics for data Datasets (extreme case: >100 PDF variations)
 - Only some *Variables* in some *Categories used* for e.g. ABCD estimations
 - Only some *Datasets* have dedicated *Systematics* (e.g.: t-quark p_T corr.)
 - Some *Variables* are only interesting for control plots in certain *Categories*

4 Ragged Histograms: Examples (1/3)

Regular histogram

<u>super-histogram</u>

Internal layout of super-histogram

Peter F. - 15.11.23

5 Ragged Histograms: Examples (2/3)

Peter F. - 15.11.23

Internal layout of super-histogram

6 Ragged Histograms: Examples (3/3)

Peter F. - 15.11.23

Internal layout of super-histogram

7 Implementation thoughts

- *super-histogram* should follow UHI
- Integrate with scikit-hep/hist
 - \rightarrow benefit from existing well-thought implementations & community-use

Peter F. - 15.1

- Potential (lightweight) backend: only NumPy
- Potential backend: JAX (*super-histograms* as PyTrees?)
 - Usually: dynamic slices \leftrightarrow JAX $\frac{1}{7}$...but we know all offsets at compile-time!
 - Multi-)GPU accelerated filling?
 - JAX array-sharding for sharded super-histograms?
 - JAX-compatible histograms are automatically compatible with JAX-based fitting libraries

8 Conclusion

Peter F. - 15.11.23

- Usually these histograms are sparse
- super-histogram implements ragged histograms to reduce the memory footprint (similar to ak.Array)
- super-histogram exploits semiring properties for improved serialization (see Jim's Talk)
- 3 Implementation ideas:
 - scikit-hep/hist
 - NumPy (optional), benefit: lightweight
 - JAX (optional), benefit: GPU-filling, data sharding, compatibility with JAX fitting libraries