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• Problem –modelling the long-term transverse beam dynamics to improve the beam lifetime.

• Beam losses in high-energy circular accelerators are a critical limitation in present and future machines;

• Understanding beam-halo formation is critical for the development of higher energy and intensity machines;

• Promising non-linear diffusive models, based on stochastic Hamiltonian frameworks, were proposed;

• Contribution 1 – defining an optimal collimator scan protocol for measuring the transverse beam  
diffusion coefficient.

• Collimators in the LHC are movable blocks that are used to remove particles at excessive amplitude;

• By moving the jaws following an original protocol, we can measure the diffusion coefficient;

• Contribution 2 – reconstruction of the diffusion coefficient from available LHC Run2 data.

• Contribution 3 – application of chaos indicators on single-particle tracking.

• Tracking simulations are used to inspect numerous accelerator lattice configurations;

• Novel chaos indicators can be used to efficiently detect chaotic structures in the phase-space, and investigate their 
connection to diffusive-like behaviours;

Overview
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• Relativistic charged particle in EM field;

• Magnetic elements, 2n-polar elements composing the lattice 
of the accelerator;

• Negligible synchrotron radiation (hadron accelerators only), 
particle energy can be considered constant – a Hamiltonian 
description is possible;

• Courant-Snyder formalism, the co-ordinates are normalized 
over the “reference” circular trajectory, which enables us to 
study the longitudinal and transverse displacements from 
such reference;

• Within this formalism, we focus on studying the transverse-
beam dynamics and the transverse-beam distribution.

The accelerator model
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This line of work sparks from the following considerations:

• Many studies higlighted how the evolution of Dynamic Aperture (i.e., the phase space region 
where stable motion occurs) can be described as a function of the number of turns, in a form 
related to the Nekhoroshev Theorem, that is:

𝐷𝐴 𝑁 = 𝜌∗
𝜅

2𝑒

𝜅 1

ln𝜅
𝑁

𝑁0

;

• Recent studies also explored the possibility of describing the evolution of the beam distribution 
using a diffusive framework, also related to Nekhoroshev Theorem;

• Experimental measurements of LHC halo dynamics at different amplitudes are available, as well 
as some first estimates of diffusive behavior.

Theoretical  foundation
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We describe the particle motion in terms of a stochastic perturbed Hamiltonian system   

𝐻(𝜃, 𝐼, 𝑡) = 𝐻0(𝐼) + 𝜉 𝑡 𝐻1(𝜃, 𝐼)

• 𝐻0(𝐼) linear part of the magnetic lattice (up to quadrupole magnet components);        

• 𝐻1(𝜃, 𝐼) non-integrable, non-linear part that causes the phase-space inhomogeneities;

• 𝜉(𝑡) stochastic noise with zero mean and unit variance. 

From this initial setup, we can make use of important theorems in perturbed Hamiltonian mechanics 
such as:

1. The Kolmogorov-Arnold-Mooser theorem (KAM);

• If a system is subjected to a weak nonlinear perturbation, some of the invariant tori are deformed and survive;

2. The Nekhoroshev theorem/estimate;

• There is an upper estimate to the stability time of an orbit, dependent on the initial amplitude;

The diffusive framework in a nutshell (1/3)
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The latest scale-law proposals for Dynamic Aperture are fully 
based on the Nekhoroshev theorem and provided good result in 
the extrapolation of long-term DA evolution.

From these promising results, the natural development of this 
framework is the construction of a more generalised beam-tail 
evolution model.

Starting from the perturbed Hamiltonian 𝐻(𝜃, 𝐼, 𝑡), we can apply 
the Averaging Principle, and describe the beam distribution 
𝜌(𝐼, 𝑡) as the solution of the Fokker-Planck equation:

𝜕𝜌

𝜕𝑡
=
𝜀2

2

𝜕

𝜕𝐼
𝐷(𝐼)

𝜕𝜌

𝜕𝐼

Where 𝐷(𝐼) is the angular average of the non-integrable part 
𝜕𝐻1

𝜕𝜃

2

𝜃
, which can be estimated via optimal remainders and by 

means of the Nekhoroshev theorem.

The diffusive framework in a nutshell (2/3)
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• The Nekhoroshev Theorem suggests 
the functional form

𝐷 𝐼 = exp −2
𝐼∗
𝐼

1
2𝜅

• Three distinct regions: 

• a stable core (𝐼/𝐼∗ < 0.6);

• a slow diffusion region
(0.6 < 𝐼/𝐼∗ < 1.0);

• a fast diffusion region (𝐼/𝐼∗ > 1.0).

The diffusive framework in a nutshell (2/2)
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Reconstructing a Nekhoroshev-Like 𝐷(𝐼)
from experimental data
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(Specific) Important components
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Collimator jaws
Beam Loss Monitors 

(BLMs)
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• If we assume that a beam distribution follows a Fokker-Plank equation with Nekhoroshev-like 
𝐷(𝐼), how can we reconstruct 𝑫 𝑰 ?

• Previous collimator scans operated with the target of reconstructing a local diffusion 
coefficient, without making assumptions on an amplitude-dependent functional form for 𝐷 𝐼 ;

• Based on our functional form, we have proposed an optimized collimator scans protocol to 
enable 𝐷 𝐼 reconstruction via the BLM signal.

• The core idea is that BLM signal can be separated into two distinct processes: a slow global 
current  𝐽𝑒𝑞 𝑡 and a fast recovery current  𝐽𝑅 𝑡 ;

• 𝐽𝑅 𝑡 is rich in information about 𝐷(𝐼).

Reconstructing 𝐷(𝐼) from collimator scans
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• Assuming a diffusive behavior, with a jaw positioned at 𝐼𝑎, we have that the beam halo will 
relax to a semi-stationary distribution, which gives us a global current:

𝜌𝑒𝑞 𝐼, 𝑡; 𝐼𝑎 = 𝛼 𝑡 න
𝐼

𝐼𝑎 d𝑥

𝐷 𝑥
, 𝛼(𝑡) =

𝜌0 𝐼0 𝑡

𝐼0 𝑡

𝐼𝑎 d𝑥
𝐷 𝑥

= 𝐽𝑒𝑞 𝑡

• When 𝐼𝑎 is changed rapidly to a different 𝐼𝑎
′ , the system will relax to a new 𝜌𝑒𝑞. This gives us a 

fast recovery current   𝐽𝑅 𝑡 = 𝐽 𝑡 − 𝐽𝑒𝑞(𝑡).

A BLM signal composed of two processes
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• As the recovery current is rich in information about 𝐷 𝐼 , we have proposed a repetition of 3-step 
outward-inward-outward collimator jaw movements;

• Long pauses between steps and data from both inward and outward movements enables us to 
reconstruct the global current and fit the recovery current;

• Simulation results tell us that this protocol is best suited when working in the 𝐼/𝐼∗ < 1 domain.

Our measurement protocol proposal
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• Between 2016 and 2018, collimator 
scans were performed at the CERN 
LHC with physics beams at 6.5 TeV;

• Scraping with IR7 TCP was done 
with inwards and outwards small 
steps;

• The data have evident diffusion-like 
features, there are two critical 
aspects:

1. No alternation of collimator steps
(difficult reconstruction of 𝐽𝑒𝑞 𝑡 );

2. Short pauses between steps (most 
assumptions about 𝜌𝑒𝑞 𝐼, 𝑡; 𝐼𝑎 don’t 

necessarily hold between steps).

LHC collimator scans from Run 2 
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• Despite the differences in measurement protocol, we 
managed to obtain promising results;

• Multiple global current reconstruction and distribution 
approximations (CSI and 𝑀) were tested to reconstruct 
the lacking information;

• The reconstructed data is then used for the diffusion fit;

• The results were presented at IPAC’22.

LHC collimator scans from Run 2 
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https://jacow.org/ipac2022/papers/mopost043.pdf


• Beam-beam (BB) wire compensators are DC wires 
that are used to cancel the effects of long-range 
beam-beam effects;

• To better understand the effect of BB wire 
compensators on beam halo, we applied our FP 
diffusion model to the Run 2 data;

• BLM calibrated losses taken with

• 4 Different collision angles;

• Wire compensators on/off on Beam 2;

• Octupoles @250/-500 A;

• Beam current transformer data.

• Various chunks of data at different combinations of 
parameters.

Diffusion model applied to beam-beam wire 
compensator data
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• 𝐷(𝐼) estimate was obtained by means of a direct fit of a 
FP process;

• Reconstructed 𝐷(𝐼) is in general always lower with 
Wires ON, suggesting improved losses/emittance 
values on longer times;

• Preliminary results were presented at a Nonlinear WG; 
the complete study was presented at IPAC’23.

Diffusion applied to BB wire compensator data
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https://indico.cern.ch/event/1188011/#2-update-on-analysis-of-%20wire-c
https://doi.org/10.18429/JACoW-IPAC-23-WEPA021


• We had the possibility to execute the scraping during LHC Run3:

• On 600b and 1200b «End of Fill», with separated beams;

• At the end of a dedicated BB wire compensator measurement, with both wires on and off;

• These first opportunities, especially the last one, will give us insights on how different 
configurations can affect both the diffusion and the performance of our protocol.

• Some first fit results (not included in the thesis) were presented at IPAC’23.

Any recent developments?

C.E. Montanari | Diffusion models and chaos indicators 1717/11/2023

https://doi.org/10.18429/JACoW-IPAC-23-WEPA022


Chaos indicators for single-particle 
tracking
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• Diffusion-like behavior are related to the existence to weakly chaotic regions in the phase 
space;

• The existence of these regions is described by the KAM and Nekhoroshev theorems;

• We are interested in exploring tools to detect and quantify these regions in tracking 
simulations;

• By using chaos indicators in single-particle tracking, we hope to better inspect and evaluate the 
regularity of accelerator lattices.

Chaotic regions and diffusion
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Within the accelerator physics community, two well-known tools in the sector of indicators of chaos 
are:

• The Fast Lyapunov Indicator (𝐹𝐿𝐼), a direct evaluation of the Maximal Lyapunov Exponent on a 
finite number of turns (implemented in Sixtrack by means of pair particles);

• A numerical estimate of 𝚵𝑛 𝒙 is evaluated on a finite 𝑛;

• 𝐹𝐿𝐼/𝑛 converges to zero if the orbit is regular;

• 𝐹𝐿𝐼/𝑛 eventually saturates to the value of the Maximal Lyapunov Indicator for a chaotic orbit;

• The Frequency Map Analysis (𝐹𝑀𝐴), which evaluates the variation of the tune of an initial 
condition over different time intervals

• A regular initial condition must have the same tune over long time intervals;

• A chaotic initial condition, conversely, will not have a tune;

Dynamic indicators – quick overview
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In our recent study, we investigated the performance of 
less-known dynamic indicators, such as:

• Fast Lyapunov Indicator with Birkhoff weights 
(𝐹𝐿𝐼𝑊𝐵 ); 

• An “enhanced” 𝐹𝐿𝐼 which makes use of the superconvergence
properties provided by the Birkhoff weights to achieve 
convergence rates faster than 𝐹𝐿𝐼

• Reverse Error Method (𝑅𝐸𝑀); Uses the numerical 
uncertainty as a tool to evaluate the orbit chaotic 
behaviour. By performing a tracking and backtracking 
of 𝑛 iterations, we can use the resulting displacement 
from the original initial condition as a measure of 
chaos.

• A regular orbit will have a displacement following a power law.

• A chaotic orbit will instead exhibit an exponential increase, 
given by the Maximal Lyapunov Exponent

Dynamic indicators – quick overview (2/3)
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Convergence comparison of regular particles in a Modulated 

Hénon Map. 𝐹𝐿𝐼𝑊𝐵 converges faster than 𝐹𝐿𝐼/𝑛 to zero.

(source)

Comparison between 

regular and chaotic 𝑅𝐸𝑀. 

Chaotic 𝑅𝐸𝑀 exponentially 

increases up to a saturation 

value corresponding to the 

«diameter» of the 
explorable phase space.

17/11/2023

https://journals.aps.org/pre/pdf/10.1103/PhysRevE.107.064209
https://link.springer.com/chapter/10.1007/978-3-662-48410-4_5


• Generalized Alignment Index (𝐺𝐴𝐿𝐼); 
𝐺𝐴𝐿𝐼𝑘 considers the evolution of 𝒌 initial 
orthonormal displacements, then, evaluates the 
volume of the parallelotope whose sides are the 
normalised images of the evolved displacements. 

• For a chaotic orbit, these displacements will eventually 
align exponentially fast towards the autovector of the 
maximal Lyapunov exponent (i.e., volume zero);

• For a regular orbit, the volume of the parallelotope 
either stays constant or decreases following a power 
law depending on 𝒌.

Dynamic indicators – quick overview
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Schetch of the Smallest Alignment Index (𝑆𝐴𝐿𝐼) indicator, 
which is mathematically equivalent to 𝐺𝐴𝐿𝐼2. (source)

The displacements along the chaotic orbit progressively align 
over the Maximal Lyapunov Exponent.
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Dynamic indicators – quick overview
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• Lyapunov Error (𝐿𝐸); instead of estimating the linear response of the system on a single 
displacement like 𝐹𝐿𝐼, it considers the trace of the covariance matrix of the full tangent map 
L𝑛 𝒙 = 𝐷𝑀 𝒙𝑛−1; 𝑛 − 1 …𝐷𝑀 𝒙0; 0 , that is

𝐿𝐸𝑛 𝒙 = Tr(L𝑛
𝑇 (𝒙)L𝑛(𝒙)).

• Mean Exponential Growth of Nearby Orbits (𝑀𝐸𝐺𝑁𝑂); 

• Reduces the fluctuations of a “direct” evaluation of an indicator such as 𝐹𝐿𝐼 or 𝐿𝐸 by means of a double-time 
average filter.

• The resulting indicator reads (for the case of 𝐿𝐸):

𝑀𝐸𝐺𝑁𝑂𝑛 𝐿𝐸 𝒙 = 𝑡
𝑑 log 𝐿𝐸𝑛(𝒙)

𝑑𝑡
where   𝑓(𝑡) =

1

𝑡
0
𝑡
𝑓 𝑡′ 𝑑𝑡
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Dynamic indicators on the modulated Hénon map
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• 4d polynomial time-dependent symplectic map;

• Straightforward implementation on GPU 
architectures, possible to reach high iteration times 
(𝑛 = 108)

(𝜔𝑥0, 𝜔𝑦0) = (0.28, 0.31), 𝜀 = 32.0, 𝜇 = 0.0, 𝑛 = 105
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Convergence of dynamic indicators over time

• Dynamic indicators have the tendency 
to create a bimodal distribution over 
time (with the exception of FMA, which 
tends to a tri-modal distribution)

• One populated cluster of regular initial 
conditions;

• A minor cluster or spread of values given by 
the chaotic initial conditions; 

• With this setup, we can classify the 
accuracy of the indicators in 
reconstructing a Ground Truth 
evaluated after 108 turns.
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Value distribution over time of dynamic indicators on a Hénon map

Simulation parameters: 𝜔𝑥0, 𝜔𝑦0 = 0.28, 0.31 , 𝜀 = 32.0, 𝜇 = 0.5
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Defining the classification performance

• “Agnostic” thresholding algorithm for detecting 
the two main distribution modes;

• Returns a binary classification threshold 
regular/chaotic;

• Kernel Density Estimate (KDE) with progressively 
smaller bandwidth

• Bandwidth reduction stops when the fluctuations in the 
distributions become significant;

• For the specific case of 𝐹𝑀𝐴, the algorithm looks 
for three modes.

26

Overview of KDE based 
thresholding algorithm for 𝑅𝐸𝑀

(top) and 𝐹𝑀𝐴 (bottom)
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Defining a Ground Truth (GT)

• From the algorithm, we define a Ground Truth (GT) using the log10(log10(𝐿𝐸)/𝑛) value with 𝑛 =
108;

• Well defined distinction between chaotic and regular initial conditions;

• A good-performing indicator will reconstruct the GT at lower 𝑛 values. Conversely, a bad-performing 
indicator will require higher 𝑛 values.

27

Visualization of GT construction
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Final considerations from the Hénon map

From the analysis of the Hénon map, we have learned 
the following things:

• 𝑹𝑬𝑴 and 𝑮𝑨𝑳𝑰(𝒌) indicators seem to provide the 
best performance in fast detection of chaos;

• Superconvergence by means of Birkhoff weights
can be used for evaluating 𝐹𝐿𝐼, namely, 𝐹𝐿𝐼𝑊𝐵 . 
Therefore, it’s a preferable method for estimating 
the maximal Lyapunov exponent.

• If we are interested in chaos detection only, 𝑭𝑴𝑨
might be affected by resonance lines and 
modulation effects.

This knowledge can be transported to more realistic 
accelerator lattices.

28

Accuracy evolution over time for the various 
dynamic indicators
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Application to a realistic HL-LHC lattice
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HL-LHC characteristics

• HL-LHC v1.4 Beam 1 optics;

• Colliding beams at top energy;

• No beam-beam interactions;

• Two different magnet noise realisations

• Out of the table of 60 seeds, we picked the 
ones which scored, respectively, the best and 
worst Dynamic Aperture at 𝑛 = 105 turns.

• Three different values of 𝜁0

• Reference orbit, half of the bucket, near the 
bucket separatrix.

30

Survival plot of HL-LHC (𝑛max = 105)
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Evaluating chaos indicators without a tangent map 
expression
• Current tools do not offer analytical expressions 

of the tangent map of realistic lattices;

• To overcome this issue, we implemented the 
“shadow particle” method to numerically 
estimate it for a given displacement 𝜖𝝃:

• Given an initial condition 𝒙0 to track, also track 𝒚0 =
𝒙0 + 𝜖𝝃 .

• Every 𝜏 turns, renormalize the distance between 𝒚
and 𝒙 to 𝜖.

• Straightforward implementation for evaluating 
both linear response and evolution of the 
displacement direction over time.

31

Sketch of the ghost particle method
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Implementation on Xsuite
• Simulation of an HL-LHC realistic lattice via the new 

software Xsuite;

• Straightforward GPU single-particle tracking 
implementation;

• Easy to implement “custom” normalisation of ghost 
particles;

• GPUs enable scale-up of initial conditions and 
consequent statistical analysis;

• Tracking 105 particles up to 105 turns takes ~2.5h on a 
Nvidia Tesla A100;

• We inspected 𝐹𝐿𝐼/𝑛, 𝐹𝐿𝐼𝑊𝐵, 𝑅𝐸𝑀, 𝐺𝐴𝐿𝐼(𝑘), and 
𝐹𝑀𝐴.
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Dynamic indicators 
evaluated on a HL-LHC 

lattice (𝑛 = 105)
Worst seed, 𝜁0 = 0.3m

Value distribution evolution 
over time on a HL-LHC 

lattice
Worst seed, 𝜁0 = 0.3m

17/11/2023



C.E. Montanari | Diffusion models and chaos indicators 33

Inspecting the Lyapunov Time

• The Lyapunov Time 𝑻𝑳 is defined as the inverse of the Maximal 
Lyapunov Exponent 𝜆1

−1 and represents the “timescale” of the chaotic 

behaviour (as the linear response is ≈ 𝑒𝜆1𝑛);
• It is not possible to draw a universal one-to-one relation between the 

stability time 𝑇𝑆 of a particle and its 𝑇𝐿:
• Cases of stable chaos and resonance-related instabilities make 

such connections impossible to draw;
• However, studies in astrophysics (e.g., Morbidelli et al.) investigated 

the possible correlation laws between the stability time 𝑇𝑆 and 𝑇𝐿;
• These lines of research might suggest interesting path in statistical 

investigations and scale-law-based extrapolations:
• A standard statistical investigation consists in inspecting the 

mean 𝑇𝐿 and 𝑇𝑆 value at different amplitudes.

Evaluation on a realistic HL-LHC lattice 

(More on that in the next slides!)

Sketch of different amplitudes over which the 

mean value is measured
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Correlations and scale laws for 𝑇𝐒 and 𝑇𝐿
• From well-established Dynamic Aperture scale laws, we 

expect 𝑇S to follow a Nekhoroshev-like scale law

𝑇 = 𝑇0 exp −
𝐼∗
𝐼0

1
2𝜅

• The Nekhoroshev character of a system is related to the 
breaking of the regular KAM tori geometry due to the 
presence of high-order resonances and non-linear 
contributions;

• Relation expected with the presence of macroscopic 
chaotic regions in the phase space;

• We expect to observe a similar Nekhoroshev-like scale law 
on 𝑇𝐿 as well!

• This would also imply the existence of a correlation law 
between 𝑇S and 𝑇𝐿
• Many proposals exist in literature, e.g., 𝑇𝐿 = 𝛼𝑇𝑆

𝛽

Radial mean of 𝑇𝐿 and 𝑇S. 𝑇S evaluated @ 

106 turns. 𝑇L evaluated @ 105 turns

«deeper» information 
with less turns? Maybe!

Testing a functional law 

for correlation 

presented in literature
(source)
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• Proposal for optimized collimator scans protocol;

• Application of the diffusive framework on Run 2 collimator scans and wire 
compensators data;

• Initial End of Fill measurements in Run 3;

• Diffusion measurements performed at the end of the last wire compensators 
measurements;

• Implementation and analysis of dynamic indicators for probing the chaotic behavior 
in particle tracking for realistic accelerator lattices.

To summarize
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carlo.emilio.montanari@cern.ch

Thank you!
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http://amsdottorato.unibo.it/10811/


Backup slides
Recent Run3 Data
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• Collimator scan performed at the end of wire-compensator MD (MD8043)

Run 3 loss data
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• Two collimator scans on the horizontal plane of Beam 1 (measured sigma units are reported);

• Scraping performed before and after the scans;

• First scraping performed after ~6 hours of beam operation and a beam-based alignment.



First estimate of beam tail distribution
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• We construct an initial estimate of the beam tail 
population using the collimator scraping data;

• The integrated losses measured during each 
collimator step are taken as an estimate of the 
proton population in that specific segment;

• The first reconstruction differs from the other 
three (time passed before the scraping is 
different);

• Following the double-gaussian model, a 
Gaussian fit is used as first estimate of the beam 
tail population;

• We consider the first reconstruction as a 𝜌0 𝐼
estimate.



Inspecting 𝑱eq at different 𝑰𝒂
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• With the collimator scan movement and the time spent 
between steps, we can assume that the last seconds of 
loss signal before the next collimator movement is 𝐽𝑒𝑞
at a specific 𝐼𝑎;

• We consider as measure the mean of the last 10 seconds 
of signal, and as uncertainty the standard deviation 
observed;

• The three-step protocol gives us three 𝐽𝑒𝑞 samplings for 
various 𝐼𝑎 values;

• We assume 𝐼0(𝑡 = 𝑡0) for the duration of the scan. 
However, the second collimator scan does show that 𝐼0
has evolved over the span of ~1 hour, as 𝐽𝑒𝑞 is lower.



Fitting 𝑫(𝑰) using 𝑱eq data
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• We reconstruct 𝐷(𝐼) by means of

𝐽𝑒𝑞 𝑡 = 𝑡0; 𝐼𝑎 =
𝜌0 𝐼0 𝑡 = 𝑡0

𝐼0 𝑡=𝑡0

𝐼𝑎 d𝑥
𝐷 𝑥

• While assuming the following:

• 𝐼∗ and 𝜅 are equal for the two scans (as there is no major variation in 
the accelerator environment);

• 𝐼0 can be considered constant for the duration of an individual scan;

• 𝜌0 is given by the gaussian fit of the first beam tail reconstruction.

• This gives us the following free parameters for the fit:

• 𝐼∗ and 𝜅, in common for the two scans;

• 𝐼0,I and 𝐼0,II, which are respectively the value of 𝐼0 for the first and 

second collimator scan.



Constructing 𝝆eq(𝑰) using the fitted 𝑫(𝑰) parameters
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• The reconstructed 𝐷(𝐼) can then be used to 
estimate the initial shape of 𝜌eq(𝐼) (although, an 

initial estimate for 𝜌0 𝐼0 𝑡 is still necessary);

• The resulting 𝜌eq(𝐼), if compared with the initial 
Gaussian fit, captures more features of the data;

• This constitutes a nice initial “consistency check” 
for the diffusive framework.



• The collimator scans performed last year followed the proposed three-step protocol, offering an 
ideal ground for applying the diffusive framework;

• In this first analysis, we reconstructed a Nekhoroshev-like 𝐷(𝐼) by inspecting the 𝐽𝑒𝑞 value at 
different collimator jaw positions.

Summary
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Future work
• Inspection of Beam 2 data, influenced by wire compensators;

• Inspection of recovery currents as cross-check of the reconstructed 𝐷(𝐼);

• Inspection of beam tail re-population times by means of our Fokker-Plank models;



Backup slides
More details on indicators of chaos and their application
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Motivation

• Study of long-term evolution of Hamiltonian systems;

• Interest in the quick detection and inspection of chaotic layers in the phase space:

• Extrapolation of long-term dynamics;

• Fitting of amplitude-dependent scaling laws;

• Assess correlation between the existence of large chaotic regions and strong diffusive behaviours;

• New mathematical tools for quickly probe the chaotic behaviour of initial conditions;

• Indicators such as the Fast Lyapunov Indicator and the Frequency Map Analysis are well known in the accelerator 
field;

• Other novel tools are available and used in astrophysics, but still not widespread in our field;

• Interest in assessing the performance of these various indicators

• GPU-enabled tracking can offer large quantity of data for statistical analysis.
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Overview of Dynamic indicators
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Regular and chaotic initial conditions

Given a symplectic map 𝑀(𝒙), an initial condition 𝒙0 is defined as either regular or chaotic depending 
on the linear response of the system to a small perturbation 𝒚0 = 𝒙0 + 𝜖𝝃. Where 𝜖𝝃 represents a 
small displacement. The linear response 𝚵𝑛 𝒙 is then defined as

𝚵𝑛 𝒙 = lim
𝜖→0

𝒚𝑛−𝒙𝑛

𝜖
,   where  𝒙𝑛 = 𝑀 𝒙𝑛−1, 𝑛 − 1 ≡ 𝑀𝑛(𝒙).

• A chaotic initial condition, will feature an exponential-like linear response 𝚵𝑛 𝒙 ≈ 𝑒𝜆1𝑛, where 
𝜆1 is the positive value maximal Lyapunov exponent of the initial condition. 

• For an 𝑚 dimensional system, each initial condition features a spectrum of 𝜆𝑚 Lyapunov exponents 
representing different attractors along the orthonormal base of choice.

• Conversely, a regular initial condition is characterised by only zero-value Lyapunov exponents.
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Detecting chaos via indicators

• To efficiently characterise the chaotic behaviour of an orbit, multiple chaos indicators have been 
developed;

• Chaos indicators inspect specific features of the orbit and provide a numerical evaluation whose 
value and convergence rate depends on the orbit behaviour;

• The most well known indicator of chaos is the Fast Lyapunov Indicator (𝐹𝐿𝐼). The quantity 
𝐹𝐿𝐼

𝑛
provides an estimate of the maximal Lyapunov exponent at a finite time 𝑛 and reads:

𝐹𝐿𝐼𝑛(𝒙0, 𝝃)

𝑛
= 

𝑖=0

𝑛−1
ln ||𝒚𝑖 − 𝒙𝑖||

𝑛
.

And will converge to zero for a regular orbit, and to a positive value for a chaotic orbit.
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Other indicators of chaos (1/3)

Many indicators have been developed over time, especially in the field of astrophysics. In our studies, 
we focused our attention on a selection of 7 different indicators (including 𝐹𝐿𝐼)

• Lyapunov Error (𝐿𝐸); instead of estimating the linear response of the system on a single 
displacement like 𝐹𝐿𝐼, it considers the trace of the covariance matrix of the full tangent map 
L𝑛 𝒙 = 𝐷𝑀 𝒙𝑛−1; 𝑛 − 1 …𝐷𝑀 𝒙0; 0 , that is

𝐿𝐸𝑛 𝒙 = Tr(L𝑛
𝑇 (𝒙)L𝑛(𝒙)).

• Fast Lyapunov Indicator with Birkhoff weights (𝐹𝐿𝐼𝑊𝐵); we can make use of the 
superconvergence properties provided by the Birkhoff weights to achieve convergence rates faster 
than 𝐹𝐿𝐼, the original 𝐹𝐿𝐼 sum then reads

𝐹𝐿𝐼𝑛
𝑊𝐵 𝒙0, 𝝃 = 

𝑖=0

𝑛−1

𝑤
𝑖

𝑛
ln 𝒚𝑖 − 𝒙𝑖 ; with w(t) ≔ ൞

exp −
1

𝑡 1 − 𝑡
, for 𝑡 ∈ 0,1

0, for 𝑡 ∉ (0,1)

.
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Other indicators of chaos (2/3)

• Mean Exponential Growth of Nearby Orbits (𝑀𝐸𝐺𝑁𝑂); 

• Reduces the fluctuations of a “direct” evaluation of an indicator such as 𝐹𝐿𝐼 or 𝐿𝐸 by means of a double-time 
average filter.

• The resulting indicator reads (for the case of 𝐿𝐸):

𝑀𝐸𝐺𝑁𝑂𝑛 𝐿𝐸 𝒙 = 𝑡
𝑑 log 𝐿𝐸𝑛(𝒙)

𝑑𝑡
where   𝑓(𝑡) =

1

𝑡
0
𝑡
𝑓 𝑡′ 𝑑𝑡

• Reversibility Error Method (𝑅𝐸𝑀); 

• Uses the numerical uncertainty as a tool to evaluate the orbit chaotic behaviour. 

• By performing a tracking and backtracking of 𝑛 iterations, we can use the resulting displacement from the 
original initial condition as a measure of chaos.

• A regular orbit will have a displacement following a power law.

• A chaotic orbit will instead exhibit an exponential increase.
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Other indicators of chaos (3/3)

• Generalized Alignment Index (𝐺𝐴𝐿𝐼); 

• 𝐺𝐴𝐿𝐼(𝑘) considers the evolution of 𝒌 initial orthonormal displacements, then, evaluates the volume of the 
parallelotope whose sides are the normalised images of the evolved displacements. 

• For a chaotic orbit, these displacements will eventually all align towards the maximal Lyapunov exponent (i.e. 
volume zero);

• For a regular orbit, the volume of the parallelotope either stays constant or follows a power law depending on 𝒌.

• Frequency Map Analysis (𝐹𝑀𝐴); 

• Well-established in accelerator physics.

• Evaluates the variation of the fundamental frequency (i.e. the tune) over different time intervals.

• We evaluate the tune variation on the 𝑥 − 𝑝𝑥 and 𝑦 − 𝑝𝑦 plane over the time intervals 0,
𝑛

2
and 

𝑛

2
, 𝑛 .

• Large variations in tune can be related to chaotic behaviour.
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Application to the modulated Hénon
map with octupolar kicks
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The modulated Hénon map with octupolar kicks
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• 4d polynomial time-dependent symplectic
map;

• Combination of fixed quadratic 
nonlinearities and cubic ones regulated by 
𝜇;

• Double rotation matrix with “SPS-like” 
modulations with amplitude regulated by 
𝜀 (the harmonics 𝜀𝑘 have an order of 
magnitude of 10−4);

Survival plot of the Hénon map (𝑛max = 108)



Implementation of chaos indicators

• Straightforward implementation on GPU 
architectures;

• Available analytical expression of the 
tangent map 𝐷𝑀 𝒙

• Enables direct evaluation of L𝑛 𝒙 ;

• Possible to explore multiple displacements 
with no extra computational cost;

• Possible to reach high iteration times (𝑛 =
108)
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Various dynamic indicators on a Hénon map 𝑛 = 105

Simulation parameters: 𝜔𝑥0, 𝜔𝑦0 = 0.28, 0.31 , 𝜀 = 32.0, 𝜇 = 0.5



Convergence of dynamic indicators over time

• Dynamic indicators have the tendency to 
create a bimodal distribution over time 
(with the exception of FMA, which tends to 
a tri-modal distribution)

• One populated cluster of regular initial 
conditions;

• A minor cluster or spread of values given by the 
chaotic initial conditions;

• From this, we can define an “agnostic” 
classification algorithm;

• Question: which indicator is the “best 
performing” in distinguishing regimes?
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Value distribution over time of dynamic indicators on a Hénon map

Simulation parameters: 𝜔𝑥0, 𝜔𝑦0 = 0.28, 0.31 , 𝜀 = 32.0, 𝜇 = 0.5



Defining the classification performance

• “Agnostic” thresholding algorithm for detecting 
the two main distribution modes;

• Returns a binary classification threshold 
regular/chaotic;

• Kernel Density Estimate (KDE) with progressively 
smaller bandwidth

• Bandwidth reduction stops when the fluctuations in the 
distributions become significant;

• For the specific case of 𝐹𝑀𝐴, the algorithm looks 
for three modes.
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Overview of KDE based 
thresholding algorithm for 𝑅𝐸𝑀

(top) and 𝐹𝑀𝐴 (bottom)



Defining a Ground Truth (GT)

• From the algorithm, we define a Ground Truth (GT) using the log10(log10(𝐿𝐸)/𝑛) value with 𝑛 =
108;

• Well defined distinction between chaotic and regular initial conditions;

• A good-performing indicator will reconstruct the GT at lower 𝑛 values. Conversely, a bad-performing 
indicator will require higher 𝑛 values.
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Visualization of GT construction



Performance overview

• We evaluate as performance metric the 
accuracy (i.e. correct classifications / 
total samples) of the indicator in 
reconstructing the GT;

• In general, 𝑅𝐸𝑀 and 𝐺𝐴𝐿𝐼(4), show the 
best performance;

• Other Lyapunov-related indicators tend to 
achieve comparable performances only at 
higher times;

• FMA shows to be strongly dependent from 
tune, modulation and resonances, as it 
detects them along with chaotic 
behaviour.
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Accuracy evolution over time for the various dynamic 
indicators



Improved convergence of 𝐹𝐿𝐼 with Birkhoff weights 

• Birkhoff weights have been successfully 
applied for the fast evaluation of tunes;

• In literature, we have examples (without 
proof) of improved 𝐹𝐿𝐼 evaluation thanks to 
Birkhoff weights;

• We have confirmed the result on the Hénon
map case, and observed both faster 
convergence and more narrow distribution 
modes;

• Both these elements provided better 
performances in reconstructing the GT;
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Simulation parameters: 𝜔𝑥0, 𝜔𝑦0 = 0.28, 0.31 , 𝜀 = 32.0, 𝜇 = 0.5

Value evolution over time (top) ensemble of regular initial conditions.
(bottom) ensemble of chaotic initial conditions.



Final considerations from the Hénon map

From the analysis of the Hénon map, we have learned the following things:

• 𝑅𝐸𝑀 and 𝐺𝐴𝐿𝐼(𝑘) indicators seem to provide the best performance in fast detection of chaos;

• 𝐹𝐿𝐼𝑊𝐵 seems to be a valid improvement over the regular 𝐹𝐿𝐼. Therefore it’s preferable for 
estimating the maximal Lyapunov exponent.

• If we are interested in chaos detection only, 𝐹𝑀𝐴 might be affected by resonance lines and 
modulation effects.

We can now transport this knowledge to more realistic accelerator lattices.
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Application to a realistic HL-LHC lattice
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HL-LHC characteristics

• HL-LHC v1.4 Beam 1 optics;

• Colliding beams at top energy;

• No beam-beam interactions;

• Two different magnet noise realisations

• Out of the table of 60 seeds, we picked the 
ones which scored, respectively, the best and 
worst Dynamic Aperture at 𝑛 = 105 turns.

• Three different values of 𝜁0

• Reference orbit, half of the bucket, near the 
bucket separatrix.
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Survival plot of HL-LHC (𝑛max = 105)



Evaluating chaos indicators without a tangent map 
expression
• Current tools do not offer analytical expressions 

of the tangent map of realistic lattices;

• To overcome this issue, we implemented the 
“shadow particle” method to numerically 
estimate it for a given displacement 𝜖𝝃:

• Given an initial condition 𝒙0 to track, also track 𝒚0 =
𝒙0 + 𝜖𝝃 .

• Every 𝜏 turns, renormalize the distance between 𝒚
and 𝒙 to 𝜖.

• Straightforward implementation for evaluating 
both linear response and evolution of the 
displacement direction over time.
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Sketch of the ghost particle method



Implementation on Xsuite

• Straightforward GPU single-particle tracking 
implementation;

• Easy to implement “custom” normalisation of 
ghost particles;

• GPUs enable scale-up of initial conditions and 
consequent statistical analysis;

• Tracking 105 particles up to 105 turns takes ~2.5h on a 
Nvidia Tesla A100;

• We inspected 𝐹𝐿𝐼/𝑛, 𝐹𝐿𝐼𝑊𝐵, 𝑅𝐸𝑀, 𝐺𝐴𝐿𝐼(𝑘), and 
𝐹𝑀𝐴.
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Dynamic indicators 
evaluated on a HL-LHC 

lattice (𝑛 = 105)
Worst seed, 𝜁0 = 0.3m

Value distribution evolution 
over time on a HL-LHC 

lattice
Worst seed, 𝜁0 = 0.3m



Longitudinal dynamics and FMA

• Different values of 𝜁0 yield different levels 
of longitudinal dynamics;

• Larger chaotic regions when 𝜁0 is closer to 
the bucket separatrix;

• 𝐹𝑀𝐴 shows a behaviour similar to the one 
observed on the Hénon map

• Affected not only by chaos, but also by 
resonances;

• Differences in structures detected, when 
compared to 𝐹𝐿𝐼𝑊𝐵, increase with 𝜁0.
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Graphic comparison between 𝐹𝑀𝐴 (top row) and 
𝐹𝐿𝐼𝑊𝐵 (bottom row). 𝑛 = 105



Inspecting the Lyapunov Time and the Stability Time

• We are interested in investigating the mean 
Lyapunov Time 𝑇𝐿 and the mean Stability Time 𝑇𝑠
at different amplitudes

• 𝑇𝐿 being the inverse of the maximal Lyapunov 
exponent (infinite when 𝜆1=0, finite when 𝜆1 has 
positive value);

• 𝑇𝑠 being the time at which an initial condition is lost 
(with 𝑛max = 105);

• We consider a moving average with Δ𝑟 = 0.2𝜎;
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Sketch of different amplitudes over which the mean value is 
measured



Inspecting the Lyapunov Time and the Stability Time

• Both 𝑇𝐿 and 𝑇𝑠 measurements have an 
inevitable “saturation” at low 
amplitudes due to the limited iteration 
number 𝑛max = 105;

• 𝑇𝑠 follows a clear Nekhoroshev-like 
decay law

𝑇 = 𝑇0 exp −
𝐼∗
𝐼0

1
2𝜅

• 𝑇𝐿 displays a similar evolution, also very 
dependent on the value of 𝜁0

• 𝑇𝐿 might be an interesting tool for “deeper” 
inspections of the Nekhoroshev character 
of the system.
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Resulting mean from the moving average at different amplitudes.
The colormap represents the value distribution observed at the specific 

radius.



Investigating the scaling laws
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• To pick the optimal slice of data to fit (no 
saturated data and no excessive discarding), we 
fit multiple slices with cuts at increasingly higher 
amplitudes;

• The final slice choice is made by minimising the 
reduced 𝜒2;

• Good fitting performance for all cases, with the 
exception of 𝑇𝐿 fit when 𝜁0 = 0;

• Case with the “smallest” chaotic regions in the phase 
space;

• Might be solvable with finer sampling.

Visualization of fitting procedure 𝜁0 = 0.3m

Fit results



On the relation between 𝑇𝐿 and 𝑇𝑠

• In the work of Morbidelli et al., the existence of 
a relation between 𝑇𝐿 and 𝑇𝑠 is discussed.

• Although the relation is found to be deeply 
model dependent, the authors distinguish two 
regimes:

• Resonance overlapping regime 𝑇𝑠~𝑇𝐿
𝛽

;

• Nekhoroshev regime 𝑇𝑠~exp(𝑇𝐿);

• If we assume both 𝑇𝐿 and 𝑇𝑠 follow a 
Nekhoroshev scale-law, we can derive
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• If 
𝜅𝐿

𝜅𝑠
= 1, we recover a polynomial relation 

𝑇𝑠 = 𝛼𝑇𝐿
𝛽

;

• If 
𝜅𝐿

𝜅𝑠
≠ 1, we have the relation in the form 

𝑇𝑠 = 𝛼 exp 𝛽 log
𝑇𝐿

𝑇0,𝐿

𝜅𝐿/𝜅𝑠
;

Relation values based on Nekhoroshev fit results (considering 
𝜅𝐿

𝜅𝑠
≠ 1)



𝐺𝐴𝐿𝐼(𝑘) indicators for inspecting tori geometry 
(ongoing)
• When picking 𝑘 < 6 (i.e. the number of dimensions of 

the system), one can choose different combinations of 
displacement directions;

• A chaotic initial condition will have a decaying 𝐺𝐴𝐿𝐼
value over time following

• Conversely, a regular initial condition will follow

with 𝑚 dependent on the tori geometry. This 
coefficient might give insights on the phase space 
structure of the system.
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Evolution of 𝐺𝐴𝐿𝐼(𝑘) with k=4, 6 for an ensemble of chaotic initial conditions 
for every possible set of displacement choices.



Final considerations and future work

• GPU performance gain and the usage of novel dynamic indicators offer interesting opportunities 
for probing the chaotic behaviour of accelerator lattices;

• Knowledge obtained from the Hénon map can be easily transposed to realistic lattices;

• Inspecting the Lyapunov time 𝑇𝐿 can provide insights on the Nekhoroshev character of a system;

Future work:

• Dedicated analysis of 𝐺𝐴𝐿𝐼(𝒌) indicators on regular orbits for inspecting tori geometry;

• Finer sampling of initial conditions at higher turns (𝑛max = 106);

• Tracking of chaotic initial conditions for dedicated diffusion measurements;

• Code release on Xsuite.
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