Brookhaven

National Laboratory

BNL Rucio DB Operation
by highly biased non-db admin

Hironori Ito
Brookhaven National Laboratory

RUCIO Workshop at UCSD, Sept 30 — Oct 4, 2024 X i ©] @BrookhavenLab

Rucio DB SIZE

ROWS

== contents 106M 210 Bil
== replicas 109M 172 Bil
== |ocks 91M 102 Bil
== dids 105M 98 Bil
= did_meta 72M 92 Bil
- rules 14M 38 Bl

~100M files
1.5TB NVMe
196GB RAM
PostgreSQL 12
RHEL7

Observed Host Performance for RUCIO

PostgreSQL

Disk Ops
25K io/s Tio/s
20K iofs 0.500 io/s
15K io/s
Oio/s
10K io/s
5K io/s -0.50 io/s
Oio/s -1io/s
10:00 12:00 14:00
nvmeOn1-r nvmelni-r nvme2ni-r
== sda-r mm NVMeInl-w == nvmeOnl-w
== sda-w == nvme2nl-w
Disk Ops
1io/s 6K io/s
0.500 i0/s
4K io/s
Oio/s
. 2K io/s
-0.50 io/s
-1io/s Oio/s
10:00 12:00 14:00
nvmeon-r nvme1ini-r nvmez2n1i-r
== sda-r - VMETNT-W == nvmeon1-w

== sda-wW == nvme2ni-w

Disk Throughput
1.50 GB/s 1B/s
J 0.500 B/s
1 GB/s |
‘ ﬁ t " “]ﬁ L L 0B/s
soome/s |] I\ -

]\ I | Mg I | -0.50 B/s
0B/s Jlan] f‘\x‘\,“\n“',ﬁ,.t“wl | U WAL .\,‘{“L\j -1B/s
10:00 12:00 14:00

== nvmeoni-r nvmelni-r nvme2n1-r
== Sda-r == NVMeTnT-w == nvmeOni1-w
== Sda-w == nvme2ni-w
Disk Throughput
1B/s 300 MB/s
0.500B/s
200 MB/s
0B/s
100 MB/s
-0.50 B/s
-1B/s 0B/s
10:00 12:00 14:00
nvmeOn1-r nvmeint-r nvme2n1-r
== sda-r ms VvmMelnl-w == nvmeOnl-w

== sda-w == nvme2ni-w

20% ‘

15% - "

| | ‘H*
10% | ; RS [
A%l
l b \u |ﬁ 1) 0

5% 10 WV B4 i) “H . :

0%

09:00 10:00 11:00 12:00 13:00 14:00

SOftirq === system = USEr == wait

Quite Busy DB disks
~ 10s KIOPS
~ 100s MB/s

DB Transaction Rate

REPLCIA TABLE

Read Rows per seconds in replicas Table

150
5 Mil
4 Mil .
3 Mil g
2 o)
2 &
2 i 50
x 2 Mil
1 Mil
| 0
0 VY , , ML I 09:00
e 1000 1100 1200 1300 1400 Insert Delete
== Read IndexRead
Read Rows per seconds in dids Table D | D TAB L E
30
8 Mil
25
6 Mil .
w
i = 15
w
“ 10
2 Mil .
0 0
09:00 10:00 11:00 12:00 13:00 14:00 09:00
== Read IndexRead == [nsert Delete

replicas Table Transaction Rate (Hz)

10:00 11:00 12:00 13:00
Update

dids Table Transaction Rate (Hz)

10:00 11:00 12:00 13:00
Update

14:00

14:00

PostgreSQL WAL Segment Size

©

Default WAL (write ahead log) segment size is 16MB

It is too small for PostgreSQL replication if RUCIO is operating at high rate of change (like deletion)
and if PostgreSQL is configured to do streaming backup.

. The volume containing WAL segments grow quickly.

WAtL segment replication in PostgreSQL is done sequentially from the main system to the backup
system.

The process is too slow under high rate.
. E.g. Deleting millions of user datasets and their files.

The WAL segment size is adjustable
. At the time of database creation
Initdb —wal-segisze=SIZE
. Or, after stopping the database
pg_resetwal --wal-segsize=SIZE /var/lib/pgsql/..../data
Then, you need to restablish the replication (remake the backup. Painful!)

. Cons: Higher chance that the backup is not up to seconds. But, does it matter if the backup is 30 seconds behind
instead of 5 seconds? And, if the replication is not catching up, then, it is already behind.

Brookhaven

National Laboratory

RUCIO DB in PostgreSQL

Lots of history tables
account_usage_history |
archive_contents_history
configs_history
contents_history
messages_history
quarantined_replicas_history
replicas_history
requests_history
rse_usage_history
rules_history
rules_history recent

sources_history

subscriptions_history

- All of these tables should be
artitioned from the beginning
y installation and codes!!!

5
%
« Some of these tables grow very quickly. »

* They will take over your database partition.

« Who will look at history from 3 years ago?
* Most history are not used or useful by the operation

« Partitioned tables can be dropped instantly.
* Instead of delete from tables where time < myrange
» drop table my-partitioned table

k? Brookhaven

National Laboratory

Partitioning history tables

CREATE TABLE rucio.rules_hist_recent (
id uuid,
scope character varying(25),
name character varying(250),
created_at timestamp without time zone,

CF%EATE INDEX "RULES_HIST_RECENT _ID_IDX" ON rucio.rules_hist_recent
USING btree (id);

CREATE INDEX "RULES _HIST RECENT_SC_NA_IDX" ON
rucio.rules_hist_recent USING bfree (scope, name);”

created atis not index - Very Slow “delete rules_hist_recent where created_at
<XXXX-YY-DD’ “

CREATE TABLE rucio.rules_hist_recent (

...) partition by range(created_at);

create table RHR 2021 01 Eartltlon of rules_hist_recent for values from ('2021-
01-01 00:00:00" fo ('2021-02-01 00:00:00;

create table RHR 2021 02 gartltlon of rules_hist_recent for values from ("2021-
02-01 00:00:00" fo ('2021-03-01 00:00:00’);

Instead of delete from rules_hist_recent where created_at < ‘2021-02-01’
Drop table RHR_2021 01

CREATE TABLE rucio.messages_history (
id uuid,
created_at timestamp without time zone,

o)

CREATE TABLE rucio.messages_history (
...) PARTITION BY RANGE (created_at);

CREATE TABLE rucio.msghist 2024 01 PARTITION OF
611206)1%%58a%es history FOR VALUES FROM ('2024-01-01 00:00:00') to ('2024-

Insteaed of delete from messages_history where created_at < ‘2024-02-01’
Drop table msghist_2024_01

k? Brookhaven

National Laboratory

SQLAlchemy
SQLAlIchemy o

PostgreSOL — SOLAlIchemy 2.0 Documentation
PostgreSQL Table Options

Several options for CREATE TABLE are supported directly by the PostgreSQL dialect in conjunction with the Table construct:

INHERITS:

Table("some table", metadata, ..., postgresql_inherits="some supertable")

Table("some_table", metadata, ..., postgresql_inherits=("t1", "t2", ...))

ON COMMIT:

Table("some table", metadata, ..., postgresql_on_commit='PRESERVE ROWS")

PARTITION BY:

Table("some table", metadata, .
postgresql_partition_by=" LIST (part_column) ')

. versionadded:: 1.2.6

k? Brookhaven - mereeore
National Laboratory 8

https://docs.sqlalchemy.org/en/20/dialects/postgresql.html

Partitioning for lazy

* One need to pre-make the partition corresponding to the entry.

 How to automate
« Just make one for the next year by scripts.
 Run a script in cron
« Add atrigger
 Pg_partman https://github.com/pgpartman/pg _partman

But, maybe even better (aka lazier, maybe smarter) option.

I k? Brookhaven
National Laboratory

https://github.com/pgpartman/pg_partman

TimescaleDB & Timescale

From Wik

TimescaleDB(https://www.timescale.com/) IS an open-source time
series database developed by Timescale Inc. It is written in C and
extends PostgreSQL. TimescaleDB is a relational database and
supports standard SOL queries. Additional SOL functions and table
structures provide support for time series data oriented towards
storage, performance, and analysis facilities for data-at-scale.

NoO Hfleot
No PremSt

I Aggregate functions over time!
©

Brookhaven
National Laboratory 10

https://www.timescale.com/

Testing TimescaleDB

In Grafana monitor

sum(size)/1000000 as size,
username

FROM
ruciorequests

WHERE

GROUP by time, username
ORDER by time

SELECT time_ bucket('5 minutes', logtime) as time,

Ruciorequests table by parsing Rucio HTTP server
log

* logtime, clienthost, serverhost, httpmeth, httpapi,

username, clientversion, clientmeth, httpcode,
Size, duration

In Grafana
k? Brookhaven

National Laboratory

TREVENEREIEYE
10:00 12:00 14:00 16:00 18:00 20:00 2200 00:00 02:00 04:00 06:00 08:00
Trigger Level > e 2 _ a0 osc0

blrucio01.sdcc.bal.gov CPU Usage

100

- Mystery big load

60

40

=
=
?

[i} R S S — B R - sd

10:00 1200 14:00 16:00 18:00 .00 2:00 00:00 04:00 06:00 08:00

= interrupt nice softing == steal == System = UM == wait

blrucio02.sdec.bM.gov CPU Usage

80

I .
HJN

) WWWMWMWWMM' 'w‘ tL~ Tt ¥

e T 4-43 Lo W P g T L.l
00:00 02:00 04:00 06:00 08:00

I e e e

10:00 12:00 14:00 16:00 18:00 20:00 22:00

- iMTErTURT nice SOfLINg we 5128 == SYSISM m= USST == Wail

® Rucio Data Sizes per 5 min

=

w
=k
=

1K

500 fud (od Lisy pag 1S3

[Stk o e

rocesyed Data Size in MB

s

—— e Y bl i e

~ — e —a

p

= size alina size aman size amartini == size anil123 == size anovosel == size athaller == size axelheim == size basehw

== size belle_skim == size belleraw] == size belleraw3 == size bilokin == size capid == size chilikin == sizeclyu == size debashis
size devender

== Size gonggd
sima Loz = Llammans|

size dirac_smv size diraccer size diracmig size diracops size diracprd size fpham size gellrich

size gpol == 5ize hideki == Size ipSita == Size jbennett == Size jordancr == size jskorupa == size katoyuii
sira lalinara eira livh _ sivalana siva masionli

fra mmamani . siwa emaresk

11

Partition Rucio table by TimescaleDB

* Regular partition

« CREATE TABLE rucio.messages_history (

)

 TimescaleDB

« CREATE TABLE
rucio.messages_history (

)
SELECT

create_hypertable(‘'messages_history
', by _range(created_at));

* It is partitioned by “time”

* NO need to create partition by hand or
trigger

« Default partition (aka chunk) is 7
days. Can be adjusted.
* Removing old data
« If it was regular partition,

 TimescaleDB

« Select
drop_chunks(‘messages_history’,
older_than => '2024-02-
01")

©

Brookhaven

National Laboratory

12

SQLAlIchemy TimescaleDB

©

Brookhaven
National Laboratory

sglalchemy-timescaledb - PyPI
SQLAlchemy TimescaleDB

pypi package [0:4.1 Tests |passing codecov [100% | downloads 165k

This is the TimescaleDB dialect driver for SQLAlchemy. Drivers psycopg2 and asyncpg are supported.

Install

$ pip install sqlalchemy-timescaledb

Usage

Adding to table timescaledb_hypertable option allows you to configure the hypertable parameters:

13

https://pypi.org/project/sqlalchemy-timescaledb/

Possible more use

» Replicas table

rse_id | uuid | | not null |

scope | character varying(25) | | not null |
name | character varying(250) | | not null |
bytes | bigint | | |

md5 | character varying(32) | | |
adler32 | character varying(8) | | |
path | character varying(1024) | | |
state | character varying(1) | | |
lock_cnt | integer | | | O

accessed_at | timestamp without time zone |
tombstone | timestamp without time zone |
created_at | timestamp without time zone |
updated_at | timestamp without time zone |

If it were TimescaleDB

Select time_bucket(‘1 hour’, updated_at) as
bucket,

Sum(bytes), scope
From replicas

Where created at > xxx’ and_created_at <="yyy’
and rse_id="ABC’ and state="Z2YX’

Group by bucket, scope
Order by bucket

k? Brookhaven

National Laboratory

14

FTS table?

MySQL t_file table
SELECT

UNIX_TIMESTAMP(finish_time) DIV 60 * 60
AS "time", sum(filesize) AS "throughput” / 60,

dest_se

FROM t_file

WHERE finish_time

BETWEEN FROM_UNIXTIME(XXXXX)

AND FROM_UNIXTIME(YYYYY)

and source_se='davs://dcgftp.usatlas.bnl.goVv’
and file_state='FINISHED’

GROUP BY 1, dest_se

ORDER BY 1,

MySQL can also do time series with some effort.

National Laboratory

k? Brookhaven

davs://dcgftp.usatlas.bnl.gov

15

FTS table?

MySQL t_file table
SELECT

UNIX_TIMESTAMP(finish_time) DIV 60 * 60
AS "time", sum(filesize) AS "throughput” / 60,

dest_se

FROM t_file

WHERE finish_time

BETWEEN FROM_UNIXTIME(XXXXX)

AND FROM_UNIXTIME(YYYYY)

and source_se='davs://dcgftp.usatlas.bnl.gov’
and file_state='FINISHED’

GROUP BY 1, dest_se

ORDER BY 1;

If it were TimescaleDB

Select

time_bucket("1m’, "finish_time’) as time,
sum(filesize) / 60 as throughput,
dest_se

from t_file

where

finish_time>’XXXX' and
finish_time<YYYY’

and
source_se=‘davs://dcgftp.usatlas.bnl.gov’

and file_state='FINISHED’
group by 1, dest_se
order by 1

k? Brookhaven

National Laboratory

16

Rucio DB at BNL

K

Rucio DB has been stable for Belle Il at BNL

Rucio DB configuration can be improved for operation.
« Wall Segment Size need to be larger.
« Accumulation of history tables
Regular cleaning
Partitioning
TimescaleDB
 Time series DB
« Auto-partitioning
« SQL and not SQL like
« Very fast aggregate functions over time

Brookhaven

National Laboratory

17

	Slide 1: BNL Rucio DB Operation by highly biased non-db admin
	Slide 2: Rucio DB SIZE
	Slide 3: Observed Host Performance for RUCIO PostgreSQL
	Slide 4: DB Transaction Rate
	Slide 5: PostgreSQL WAL Segment Size
	Slide 6: RUCIO DB in PostgreSQL
	Slide 7: Partitioning history tables
	Slide 8: SQLAlchemy
	Slide 9: Partitioning for lazy
	Slide 10: TimescaleDB
	Slide 11: Testing TimescaleDB
	Slide 12: Partition Rucio table by TimescaleDB
	Slide 13: SQLAlchemy TimescaleDB
	Slide 14: Possible more use
	Slide 15: FTS table?
	Slide 16: FTS table?
	Slide 17: Rucio DB at BNL

