
BNL Rucio DB Operation
by highly biased non-db admin

RUCIO Workshop at UCSD, Sept 30 – Oct 4, 2024

Hironori Ito

Brookhaven National Laboratory

Rucio DB SIZE

2

106M

109M

91M

105M

72M

14M

ROWS

~100M files

1.5TB NVMe

196GB RAM

PostgreSQL 12

RHEL7

Observed Host Performance for RUCIO
PostgreSQL

3

Quite Busy DB disks

~ 10s KIOPS

~ 100s MB/s

DB Transaction Rate

4

REPLCIA TABLE

DID TABLE

PostgreSQL WAL Segment Size

• Default WAL (write ahead log) segment size is 16MB

• It is too small for PostgreSQL replication if RUCIO is operating at high rate of change (like deletion)
and if PostgreSQL is configured to do streaming backup.
• The volume containing WAL segments grow quickly.

• WAL segment replication in PostgreSQL is done sequentially from the main system to the backup
system.

• The process is too slow under high rate.
• E.g. Deleting millions of user datasets and their files.

• The WAL segment size is adjustable
• At the time of database creation

• Initdb –wal-segisze=SIZE

• Or, after stopping the database
• pg_resetwal --wal-segsize=SIZE /var/lib/pgsql/…./data

• Then, you need to restablish the replication (remake the backup. Painful!)

• Cons: Higher chance that the backup is not up to seconds. But, does it matter if the backup is 30 seconds behind
instead of 5 seconds? And, if the replication is not catching up, then, it is already behind.

5

RUCIO DB in PostgreSQL

• Lots of history tables

• account_usage_history

• archive_contents_history

• configs_history

• contents_history

• messages_history

• quarantined_replicas_history

• replicas_history

• requests_history

• rse_usage_history

• rules_history

• rules_history_recent

• sources_history

• subscriptions_history

• All of these tables should be
partitioned from the beginning
by installation and codes!!!

• Some of these tables grow very quickly.
• They will take over your database partition.

• Who will look at history from 3 years ago?
• Most history are not used or useful by the operation

• Partitioned tables can be dropped instantly.
• Instead of delete from tables where time < myrange

• drop table my-partitioned table

6

Partitioning history tables
CREATE TABLE rucio.rules_hist_recent (

 id uuid,

 scope character varying(25),

 name character varying(250),

 created_at timestamp without time zone,
…);
CREATE INDEX "RULES_HIST_RECENT_ID_IDX" ON rucio.rules_hist_recent
USING btree (id);

CREATE INDEX "RULES_HIST_RECENT_SC_NA_IDX" ON
rucio.rules_hist_recent USING btree (scope, name);

created_at is not index → Very Slow “delete rules_hist_recent where created_at
<‘XXXX-YY-DD’ “

CREATE TABLE rucio.rules_hist_recent (

…) partition by range(created_at);

….

create table RHR_2021_01 partition of rules_hist_recent for values from ('2021-
01-01 00:00:00') to ('2021-02-01 00:00:00');

create table RHR_2021_02 partition of rules_hist_recent for values from ('2021-
02-01 00:00:00') to ('2021-03-01 00:00:00’);

…

Instead of delete from rules_hist_recent where created_at < ‘2021-02-01’

Drop table RHR_2021_01

CREATE TABLE rucio.messages_history (

id uuid,

created_at timestamp without time zone,

…);

CREATE TABLE rucio.messages_history (

…) PARTITION BY RANGE (created_at);

CREATE TABLE rucio.msghist_2024_01 PARTITION OF
rucio.messages_history FOR VALUES FROM ('2024-01-01 00:00:00') to ('2024-
02-01 00:00:00’);

….

Insteaed of delete from messages_history where created_at < ‘2024-02-01’

Drop table msghist_2024_01

7

SQLAlchemy

8

PostgreSQL — SQLAlchemy 2.0 Documentation

https://docs.sqlalchemy.org/en/20/dialects/postgresql.html

Partitioning for lazy

• One need to pre-make the partition corresponding to the entry.

• How to automate
• Just make one for the next year by scripts.

• Run a script in cron

• Add a trigger

• Pg_partman https://github.com/pgpartman/pg_partman

But, maybe even better (aka lazier, maybe smarter) option.

9

https://github.com/pgpartman/pg_partman

TimescaleDB
From Wiki

TimescaleDB(https://www.timescale.com/) is an open-source time
series database developed by Timescale Inc. It is written in C and
extends PostgreSQL. TimescaleDB is a relational database and
supports standard SQL queries. Additional SQL functions and table
structures provide support for time series data oriented towards
storage, performance, and analysis facilities for data-at-scale.

10

No need to learn a new query language

No InfluxQL

No PromQL

Aggregate functions over time!

https://www.timescale.com/

Testing TimescaleDB

11

SELECT time_bucket('5 minutes', logtime) as time,

 sum(size)/1000000 as size,

 username

FROM

 ruciorequests

WHERE

 $__timeFilter(logtime)

GROUP by time, username

ORDER by time

In Grafana monitor

Ruciorequests table by parsing Rucio HTTP server

log

• logtime, clienthost, serverhost, httpmeth, httpapi,

username, clientversion, clientmeth, httpcode,

size, duration

Mystery big load

Trigger Level

In Grafana

Partition Rucio table by TimescaleDB

• Regular partition

• CREATE TABLE rucio.messages_history (

…) PARTITION BY RANGE
(created_at);

• TimescaleDB

• CREATE TABLE
rucio.messages_history (

…)
• SELECT

create_hypertable(‘messages_history
’, by_range(created_at));

• It is partitioned by “time”

• No need to create partition by hand or
trigger

• Default partition (aka chunk) is 7
days. Can be adjusted.

• Removing old data

• If it was regular partition,

• Drop table msghist_2024_01

• TimescaleDB

• Select
drop_chunks(‘messages_history’,
older_than => ‘2024-02-
01’)

12

SQLAlchemy TimescaleDB

13

sqlalchemy-timescaledb · PyPI

https://pypi.org/project/sqlalchemy-timescaledb/

Possible more use

• Replicas table
 rse_id | uuid | | not null |

 scope | character varying(25) | | not null |

 name | character varying(250) | | not null |
 bytes | bigint | | |

 md5 | character varying(32) | | |

 adler32 | character varying(8) | | |
 path | character varying(1024) | | |

 state | character varying(1) | | |

 lock_cnt | integer | | | 0
 accessed_at | timestamp without time zone | |

 tombstone | timestamp without time zone | |

 created_at | timestamp without time zone | | |
 updated_at | timestamp without time zone | |

• If it were TimescaleDB
Select time_bucket(‘1 hour’, updated_at) as
bucket,
Sum(bytes), scope
From replicas
Where created_at > ‘xxx’ and created_at <=‘yyy’
and rse_id=‘ABC’ and state=‘ZYX’
Group by bucket, scope
Order by bucket

Directly plot on Grafana monitor

One can join with multiple tables
 eg, rses, scopes, etc…

14

FTS table?

15

MySQL t_file table

SELECT

UNIX_TIMESTAMP(finish_time) DIV 60 * 60
AS "time", sum(filesize) AS "throughput“ / 60,

dest_se

FROM t_file

WHERE finish_time

BETWEEN FROM_UNIXTIME(XXXXX)

AND FROM_UNIXTIME(YYYYY)

and source_se='davs://dcgftp.usatlas.bnl.gov’

and file_state='FINISHED’

GROUP BY 1, dest_se

ORDER BY 1;

DIV every row! MySQL can also do time series with some effort.

FTS table?
MySQL t_file table

SELECT

UNIX_TIMESTAMP(finish_time) DIV 60 * 60
AS "time", sum(filesize) AS "throughput“ / 60,

dest_se

FROM t_file

WHERE finish_time

BETWEEN FROM_UNIXTIME(XXXXX)

AND FROM_UNIXTIME(YYYYY)

and source_se='davs://dcgftp.usatlas.bnl.gov’

and file_state='FINISHED’

GROUP BY 1, dest_se

ORDER BY 1;

If it were TimescaleDB

Select

time_bucket(‘1m’, ‘finish_time’) as time,

sum(filesize) / 60 as throughput,

dest_se

from t_file

where

finish_time>’XXXX’ and
finish_time<‘YYYY’

and
source_se=‘davs://dcgftp.usatlas.bnl.gov’

and file_state=‘FINISHED’

group by 1, dest_se

order by 1

16

DIV every row!

Rucio DB at BNL

• Rucio DB has been stable for Belle II at BNL

• Rucio DB configuration can be improved for operation.
• Wall Segment Size need to be larger.

• Accumulation of history tables
• Regular cleaning

• Partitioning

• TimescaleDB
• Time series DB

• Auto-partitioning

• SQL and not SQL like

• Very fast aggregate functions over time

17

	Slide 1: BNL Rucio DB Operation by highly biased non-db admin
	Slide 2: Rucio DB SIZE
	Slide 3: Observed Host Performance for RUCIO PostgreSQL
	Slide 4: DB Transaction Rate
	Slide 5: PostgreSQL WAL Segment Size
	Slide 6: RUCIO DB in PostgreSQL
	Slide 7: Partitioning history tables
	Slide 8: SQLAlchemy
	Slide 9: Partitioning for lazy
	Slide 10: TimescaleDB
	Slide 11: Testing TimescaleDB
	Slide 12: Partition Rucio table by TimescaleDB
	Slide 13: SQLAlchemy TimescaleDB
	Slide 14: Possible more use
	Slide 15: FTS table?
	Slide 16: FTS table?
	Slide 17: Rucio DB at BNL

