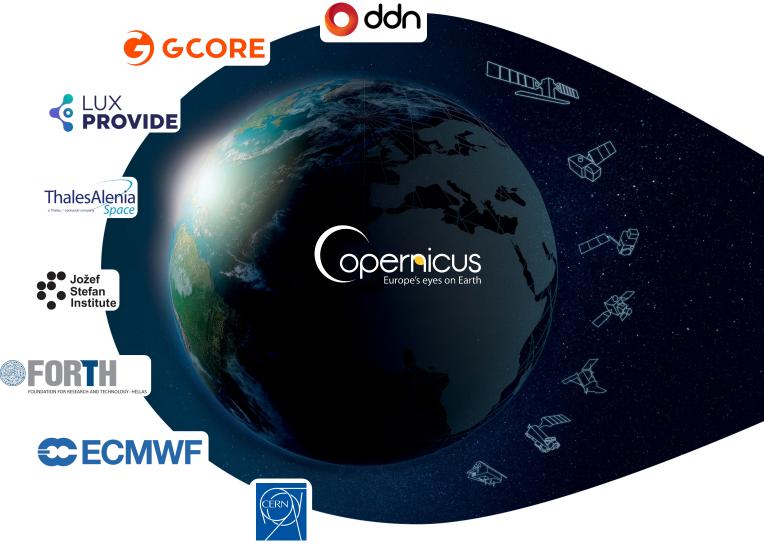
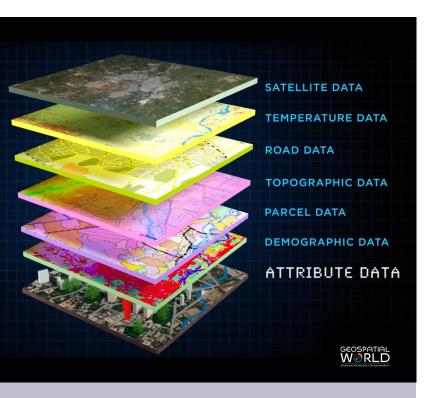


Extending Rucio for Enhanced Earth Observation Data Management

Dimitris Xenakis


Outline

- Overview of DaFab Al.
 - + Project's vision, motivation, tasks
- Rucio's role in the DaFab ecosystem.
 - + What is/isn't currently offered
- Metadata extension roadmap
 - + Beyond planned enhancements
- Key challenges
 - + Preliminary performance insights
- Conclusion

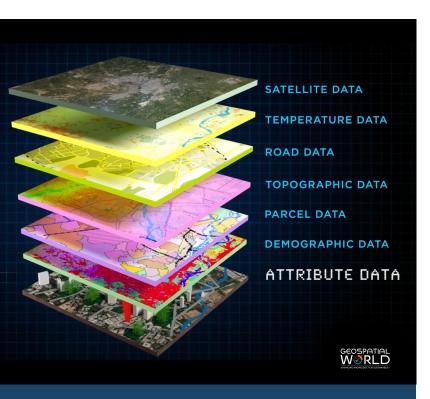


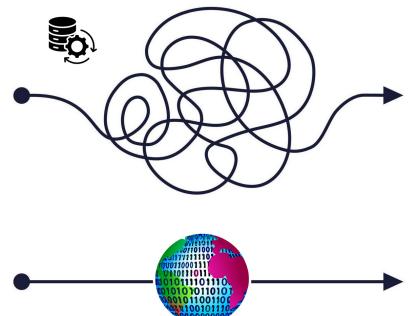
Overview of DaFab Al Vision

Facilitate EO data exploitation through innovative cloud services and high-performance computing.

Overview of DaFab Al Motivation

Unified Access to Distributed and Heterogeneous Data Sources


Scalable and Sustainable Data / Workflow Management


Timely EO Analysis through Al-driven Metadata Extraction

Overview of DaFab Al Motivation

Unified Access to Distributed and Heterogeneous Data Sources

Scalable and Sustainable Data / Workflow Management

Timely EO Analysis through Al-driven Metadata Extraction

Overview of DaFab Al Tasks

Workgroups:

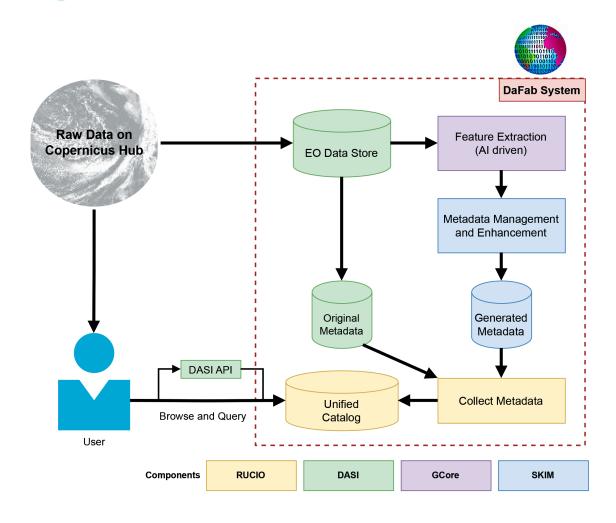
- 1: Project Management
- 2: Al design for metadata extraction
- 3: Development of a Unified Metadata Catalogue
- 4: Data Processing and Orchestration
- 5: Use Case Implementation and Evaluation
- **6:** Communication, Dissemination, Exploitation

Overview of DaFab Al Tasks

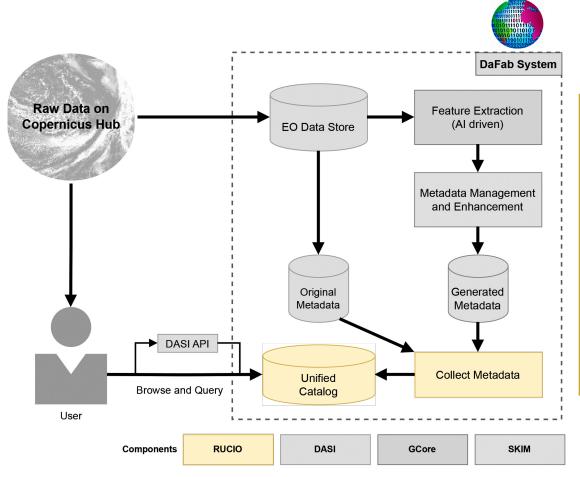
Workgroups:

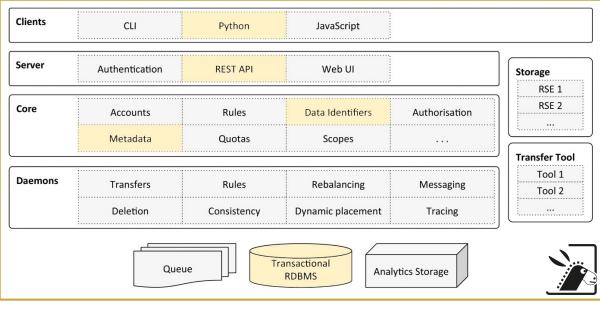
- 1: Project Management
- 2: Al design for metadata extraction
- 3: Development of a Unified Metadata Catalogue
- 4: Data Processing and Orchestration
- 5: Use Case Implementation and Evaluation ———>
- **6:** Communication, Dissemination, Exploitation

Overview of DaFab Al Tasks


Workgroups:

- 1: Project Management
- 2: Al design for metadata extraction
- 3: Development of a Unified Metadata Catalogue
- 4: Data Processing and Orchestration
- 5: Use Case Implementation and Evaluation
- **6:** Communication, Dissemination, Exploitation


Rucio's role in the DaFab ecosystem


High-level architecture

Rucio's role in the DaFab ecosystem

High-level architecture

Rucio's role in the DaFab ecosystem Current metadata capabilities

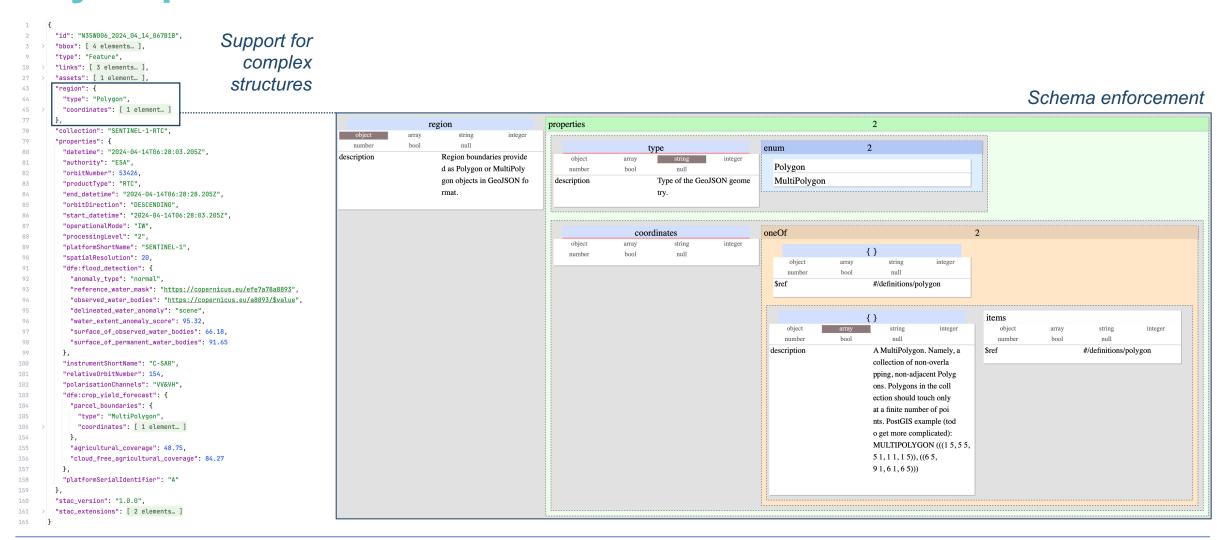
A) Fixed-Columns (default approach)

```
Tables: dids - Contains the stored metadata in predefined columns
did_keys - Defines the allowed keys and their properties
did_key_map - Specifies allowed values for specific metadata keys
```

B) JSON Plugin (extension)

Tables: did_meta - Stores additional metadata as Key-Value pairs in the meta column (JSONB / JSON / CLOB / String)

Rucio's role in the DaFab ecosystem Current metadata capabilities


A) Fixed-Columns (default approach)

- More performant in terms of querying and indexing.
- Schema enforcement with type safety.
- Compatible with all database systems without special features.
- No overhead for storing key names repeatedly.

B) JSON Plugin (extension)

- Provides flexibility/extensibility for storing arbitrary metadata without altering the table's schema.

Rucio's role in the DaFab ecosystem Key requirements

Metadata extension roadmap Current milestones for the "extended metadata" approach

- Develop a JSONB-based metadata cataloging mechanism that satisfies DaFab's requirements.
- Design REST API methods for..

Metadata Access of selected DID/s

Fetch specified/all fields

DID Search with Metadata Filtering

- Comparisons: ==, !=, >, <, >=, <=
- Combinations: AND, OR

Metadata Management

- Add/remove/modify fields
- Edit/validate schema

- Bring the functionality to Rucio Client.
- Migrate Rucio Server from Fixed-Column to JSON while maintaining performance.

Metadata extension roadmap and Beyond.. (open to discussion)

More powerful API functionalities.

..e.g. Select which JSON fields to be returned during a "DID Search with Metadata Filtering".

Generalize the metadata functionality to be applicable to more queries.

Key challenges Require addressing

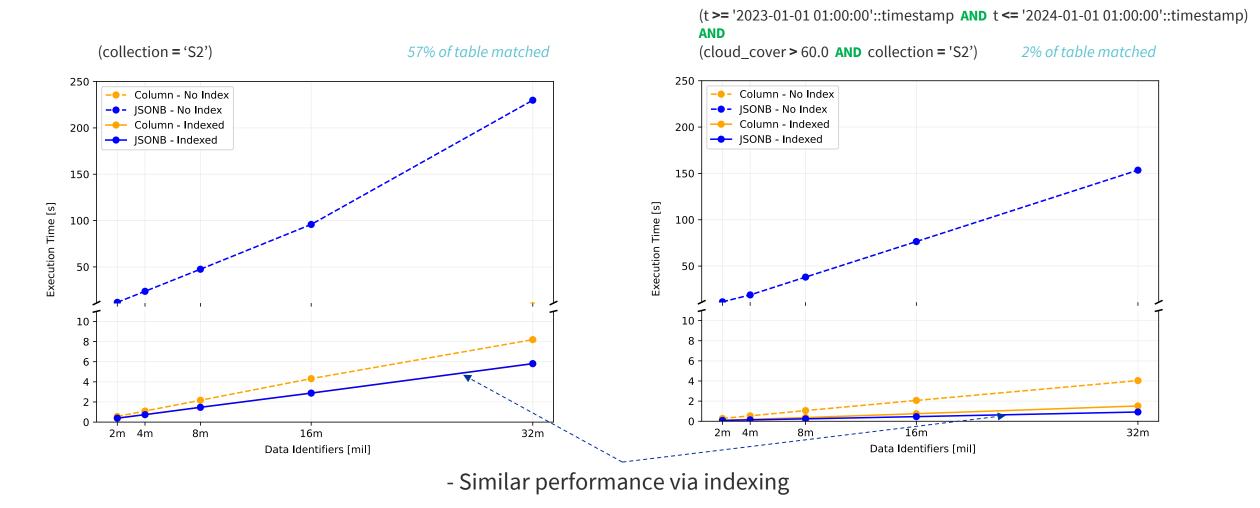
Schema Evolution: Ensure backward compatibility while allowing

for future metadata schema changes.

Query Performance: Optimize queries/indices on JSONB data

to maintain (or improve) current performance.

Scalability: Ensure the new system can handle


increasing volumes of data and users.

Data Migration: Safely transition existing fixed-column metadata

to the new JSON-based structure.

Key challenges

Performance insights: Fixed-column vs JSONB

Key challenges

Performance insights: Fixed-column vs JSONB

 $(t \ge 2023-01-01\ 01:00:00'::timestamp \ AND \ t \le 2024-01-01\ 01:00:00'::timestamp)$ **AND** (cloud cover > 60.0 OR collection = 'S2') 74% of table matched (cloud cover > 60.0 **OR** collection = 'S2') 5% of table matched --- Column - No Index Column - No Index --- JSONB - No Index ISONB - No Index Column - Indexed Column - Indexed ISONB - Indexed ISONB - Indexed 250 250 200 200 Execution Time [s] Execution Time [s] 150 150 100 50 50 30 🕇 30 7 20 20 10 10 8m 16m 32m 8m 16m 32m 2m....4m 2m 4m Data Identifiers [mil] Data Identifiers [mil] - In both Fixed-column & JSONB cases, the planner avoided - Due to the specific *cloud_cover / collection* statistics. - Yet how representative would such a total indexing-rejection be? any index use for (cloud cover > 60.0 OR collection = 'S2')

Conclusion

- DaFab Al goal:

Enhance EO data management using <u>upcoming Rucio's extended metadata capabilities</u>.

- Key developments:

new JSON-based DB mechanism, improved API and client, and migration from fixed-columns.

- Challenges:

Schema evolution, performance, scalability, data migration.

- Performance:

When indices are utilized, JSONB queries can match fixed-column performance.

Thank you for your attention

Dimitris Xenakis: d.xenakis@cern.ch

DaFab AI: www.dafab-ai.eu

Thanks for asking What about Elasticsearch?

	JSONB	Elasticsearch
Query Complexity	Our queries are primarily simple lookups and basic filtering.	We require advanced full-text search and complex nested queries.
Scalability Concerns	Our DB growth is manageable. A vertical scaling suffices.	We need horizontal scalability that Elasticsearch provides.
Operational Overhead	We prefer maintaining a single database system.	We have the resources for additional Elasticsearch clusters (or ELK stacks).
Data Consistency	Strong consistency is crucial for our use case.	We can tolerate eventual consistency for metadata queries.
Integration Effort	Minimal changes required to existing Rucio codebase.	We're prepared for significant changes to Rucio's data access layer.
Storage Strategy	Keeping all data in PostgreSQL simplifies our data management.	We're open to a hybrid storage approach for improved query performance.
Flexibility Needs	Our metadata schema is relatively stable.	We need high flexibility for frequently changing metadata structures.