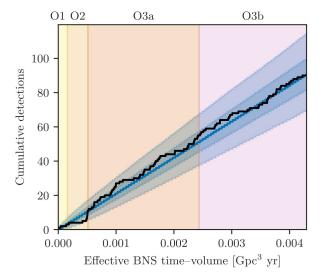
Rucio and the International Gravitational Wave Network

James Alexander Clark, LIGO

james.clark@ligo.org, 7th Rucio Community Workshop, LIGO-G2402116


International Gravitational Wave Network

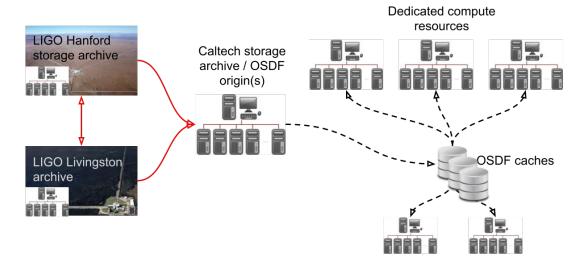
Observing status

Data taken in observing runs of months' - years' stable instrumental (and software) configuration; Current O4 (start May 24, 2023) status (see https://gracedb.ligo.org/superevents/public/O4/):

- 04 Significant Detection Candidates: 140 (156 Total 16 Retracted)
- 04 Low Significance Detection Candidates: 2459 (Total)

-	100 Мрс	100-140 Мрс	<i>150</i> -160+ Мрс	240-325 Mpc
	30 Мрс	40-50 Мрс	50-80 Мрс	See text
		0.7 Mpc	1-3 ≃10 Mpc Mpc	25-128 Mpc
	1 1		Mpc Mpc 0.7 Mpc	Mpc Mpc Mpc Mpc 0.7 1-3 ≃10 Mpc Mpc Mpc Mpc

Data products & management


Instrumental data from O(500,000) channels in LIGO/Virgo instruments recorded into "frame files":

- Low-latency data streams: ~real-time searches & public alerts (finite ~weeks lifetime)
- High-latency bulk frame files: instrument data aggregated into various frame file types at different levels of reduction → long-term custodial storage & offline / archival searches, computationally expensive parameter estimation etc

Rucio used in LIGO to manage high-latency streams / custodial storage.

Bulk data \rightarrow dHTC resources via OSDF

~10 different LIGO datasets with file cadence between 64-4096s (~few GB per file)

Distributed compute

Data products & management

O4 archival frame file data sets (since May 24 2023)

Frame type	Total Size	Count	Typical size / file	Typical duration / file (s	
Raw	2.4P	1.3M	2G	64	
Strain	26.9T	21.0K	1.6G	4096	
Strain ("analysis ready")	17.5T	14.3K	1.6G	4096	
Minute-trend	11.5T	23.7K	500M	3600	
Second-trend	141.7T	142.4K	1.1G	600	

Still managed by legacy LIGO Data Replicator system

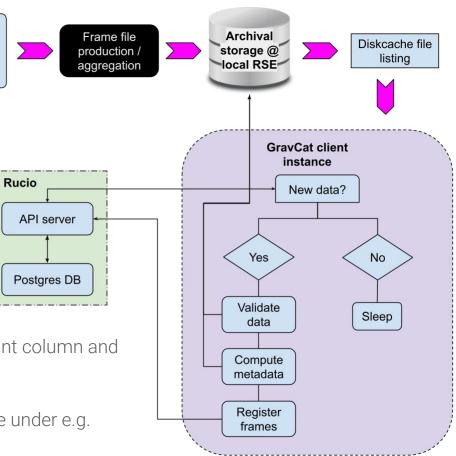
- Transition for highest priority set pending backup operator training (in progress)
- Entire deployment, admin, development & operation effort to date \rightarrow <100% of my time.

GravCat

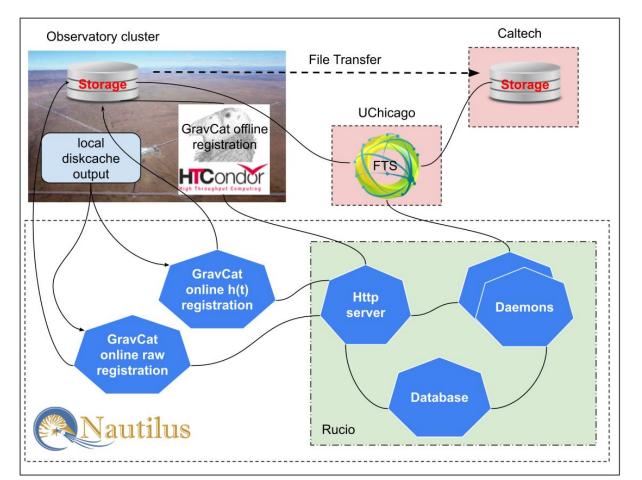
Data is produced upstream of rucio \rightarrow exists in archival storage in-situ so no rucio uploads.

IFO

D


A

Q


"GravCat": domain-specific application: rucio client API to register existing replicas, create datasets etc

Performs internal frame-file validation, adds relevant column and JSON metadata.

Runs in daemon mode in e.g. k8s or in batch mode under e.g. HTCondor.

LIGO Rucio deployment architecture

Some conventions: scopes, LFN2PFN, ...

Desired POSIX paths for IGWN frame files generally determined by: a) observing run & a basename convention.

E.g. LFN: H-H1_HOFT_C00-1411305472-4096.gwf from observing run O4 has desired PFN:

<local RSE prefix>/04/hoft_C00/H1/H-H1_HOFT_C00-141/H-H1_HOFT_C00-1411305472-4096.gwf

So: deterministic LFN2PFN in custom policy package & YAML lookup table for data type translations

Encode observing run in the scope like <account>.<data-product>.<observing-run>, e.g.: frames.L1-hoft.04

Can support admins' preferences for file distribution compatibility evolution of PFNs conventions over years of observing runs.

Subscriptions

Use Rucio *datasets* to represent each parent directory of frame files, e.g. **H-H1_HOFT_C00-141** on previous slide:

frames.H1-hoft.O4:H-H1_HOFT_C00-141

Define subscriptions based on GravCat-imposed metadata and scopes:

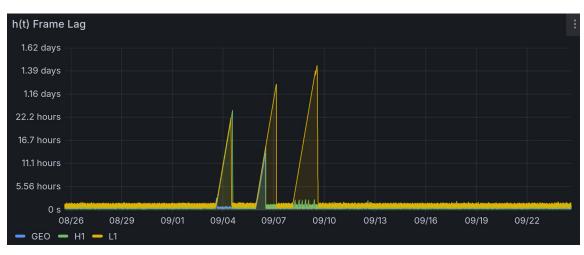
💲 rucio-admin subscription list 04-CIT-hoft-ar
frames: 04-CIT-hoft-ar UPDATED
priority: 3
filter: {"stream_name": ["L1_HOFT_C00_AR", "H1_HOFT_C00_AR"], "did_type": ["DATASET"], "scope": ["frames.L1-hoft.04", "frames.H1-hoft.04"]}
rules: [{"copies": 1, "rse_expression": "LIGO-CIT", "activity": "User Subscriptions"}]

Resulting rules:

🖇 rucio list-rulessubscription frames 04-CIT-hoft-ar									
ID	ACCOUNT	SCOPE:NAME	STATE[OK/REPL/STUCK]	RSE_EXPRESSION	COPIES	EXPIRES (UTC)	CREATED (UTC)		
b7c4b76838b84741adfc5c8ffe2f4388	frames	frames.H1-hoft.O4:H-H1_HOFT_C00_AR-137	OK[2115/0/0]	LIGO-CIT			2023-09-11 19:06:52		
e01cb4dfcdb8408da4e002465b601ae6	frames	frames.H1-hoft.O4:H-H1_HOFT_CO0_AR-140	OK[1177/0/0]	LIGO-CIT			2024-05-18 01:34:38		
cb97aa2c8b9d4cafa540f17cd4a8528c	frames	frames.H1-hoft.O4:H-H1_HOFT_C00_AR-136	OK[152/0/0]	LIGO-CIT			2023-09-11 19:06:51		
191d4ec07656482784201bfccc06b7cb	frames	frames.H1-hoft.O4:H-H1_HOFT_CO0_AR-141	OK[260/0/0]	LIGO-CIT			2024-09-10 13:01:37		
d4407b2c852043b4b3661039466578ae	frames	frames.L1-hoft.O4:L-L1_HOFT_C00_AR-141	OK[227/0/0]	LIGO-CIT			2024-09-10 13:21:39		
670d2778ce6347e88691b7722de17d8a	frames	frames.L1-hoft.O4:L-L1_HOFT_C00_AR-140	OK[2240/0/0]	LIGO-CIT			2024-05-17 18:52:15		
012a25b83c4d43c0b70d1cca55a08aca	frames	<pre>frames.L1-hoft.04:L-L1_HOFT_C00_AR-138</pre>	OK[1594/0/0]	LIGO-CIT			2023-09-29 08:20:16		
941d34a2f4a441e0933fd4b6787f606e	frames	frames.H1-hoft.O4:H-H1_HOFT_C00_AR-138	OK[1919/0/0]	LIGO-CIT			2023-09-29 08:16:16		
e0ded56e84db421bb660c8ef86ded65c	frames	frames.L1-hoft.O4:L-L1_HOFT_C00_AR-139	OK[1027/0/0]	LIGO-CIT			2024-03-21 02:23:51		
8b59c92307684b4c93ffc77be1b88bf3	frames	frames.H1-hoft.O4:H-H1_HOFT_C00_AR-139	OK[940/0/0]	LIGO-CIT			2024-03-21 02:03:49		

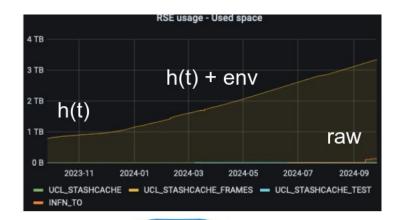
Monitoring

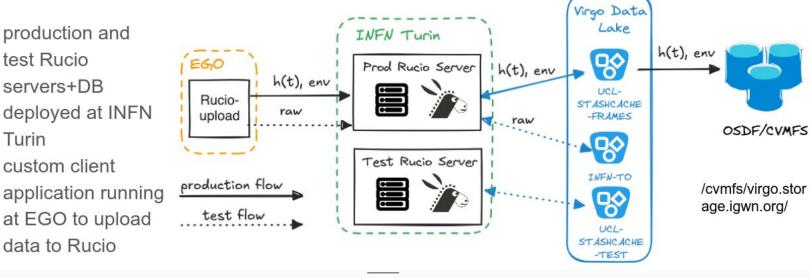
Use native Rucio events \rightarrow ELK stack to monitor general health, quantify activity.


Primary health indicator: legacy (20+ year) "lag" monitoring.

Cronjob compares time-stamps of LFNs with current time at destination.

Visual inspection for obvious problems.


Also use Icinga lag monitoring for alerts.



Virgo Rucio Setup

- Virgo moved to Rucio in 2020 to replace legacy replication software
- Data flow:
 - Production: h(t) + env condition data transferred via Rucio from EGO to Origin Stashcache in Louvain, and then distributed through CVMFS/OSDF
 - Under Test: raw transfer from EGO to INFN Turin

Feedback

No out-of-the-box data discovery tools and non-trivial in-situ file registration

likely very domain specific so probably not a reasonable ask (?)

Desirable to extend metadata support

- Can repurpose existing attributes but subscriptions and native metadata would be ideal.
- e.g. metadata matches based on time/frequency/... inequalities.

Rules sometimes remain stuck after an outage

- Sometimes need to boost a rule to un-stick it after end-point or FTS outages

FTS doesn't use temporary filenames 😡

- if connectivity gets bad enough during a transfer FTS fails to clean up a failed transfer.
- Incomplete files can then be exposed to users / archive processes.
- Unclear what *Rucio* could reasonably do about this.

Finally:

- Fantastic development/user community!
- Excited to learn more, understand scope to extend to other data management tasks.