L
o
Overview of the Pelican
Platform

Justin Hiemstra
Research Software Engineer & Pelican Developer

Center for High Throughput Computing

Why Data Federations?

At its core, the Pelican Platform is a set of
tools for creating/managing Data
Federations. Our use cases dictate that:

e Data owners may come and go as they like

* Data owners have the ultimate authority to
choose how their data is used/distributed

» Unified namespaces, decentralized storage —
to a user, everything feels like it’s coming
from the same source

* Through combining resources while
respecting individual needs, we can tackle
bigger challenges — Scalability!

Serving Two Sides of the Same Coin

| want cloud
formation data!

Weather Data

(L

Data might come from...

A hard drive in the lab Data might be needed for...
) are driveinthela « A PyTorch dataloader
« AWS/S3 . D ..
Glob + Browser visualizations
) A OHl.JlfI_P S « AnHTCondor job
©on erver Wherever YOU need your

* Wherever YOU keep your data! 3
data!

Serving Two Sides of the Same Coin

Weather Data P I' \ _ b
- elican's |JOoD.:
- j

Data might come from... To connect data providers
* Aharddrivein the lab Wlth data consumers

- AWS/S3

* Globus

e AnHTTP Server
* Wherever YOU keep your
data!

| want cloud
formation data!

Data might be needed for...

* A PyTorch dataloader

» Browser visualizations

« AnHTCondor job

* Wherever YOU need your
data! 4

Serving Two Sides of the Same Coin
Pelican Allows...

Dataset owners to Data consumers to
= federate their data from access and compute
= wherever it lives natively, on data wherever

granting access to they need it.

whomever they choose.

3
o

ooming In —
Technical Components

} Origins, Caches, Registries, and Directors,
OH MY!

Pelican federations are made up of 6 core entities:

Federation Central Services

T
= — | origin Cache O
L

Origins, Caches, Registries, and Directors,
OH MY!

Pelican federations are made up of 6 core entities:

1. Clients — used to interact with
objects, perform
uploads/downloads, etc.

Federation Central Services

Data
T
= — | origin Cache
-

Pelican federations are made up of 6 core entities:
1.

Origins, Caches, Registries, and Directors,
OH MY!

Clients — used to interact with
objects, perform
uploads/downloads, etc.
Object Store — where the data
actually lives

Federation Central Services

T
-) origin Cache O
L

Pelican federations are made up of 6 core entities:

Origins, Caches, Registries, and Directors,
OH MY!

Clients — used to interact with
objects, perform
uploads/downloads, etc.
Object Store — where the data
actually lives

Origins — acts as a connector

between federation and repository
Data

Federation Central Services

(L
I

10

Origins, Caches, Registries, and Directors,
OH MY!

Pelican federations are made up of 6 core entities:
1. Clients — used to interact with Federation Central Services
objects, perform
uploads/downloads, etc.
2. Object Store — where the data
actually lives
3. Origins — acts as a connector
between federation and repository

4. Caches — stores copies of objects Data

in federation -
- .
g — | Origin
U

11

Origins, Caches, Registries, and Directors,

OH MY!

Pelican federations are made up of 6 core entities:
1. Clients — used to interact with
objects, perform
uploads/downloads, etc.
2. Object Store — where the data
actually lives
3. Origins — acts as a connector
between federation and repository
4. Caches — stores copies of objects Data

in federation
5. Director — tells people where to Orlgm
get the data they're looking for

12

Pelican federations are made up of 6 core entities:
1.

Origins, Caches, Registries, and Directors,
OH MY!

Clients — used to interact with
objects, perform
uploads/downloads, etc.
Object Store — where the data
actually lives

Origins — acts as a connector _ v.
between federation and repository @ 9/25?@
Caches — stores copies of objects -

Data
in federation -(_ -
Director — tells people where to Ul — | Origin Cache

get the data they're looking for
Registry — persistent storage for \.\ %
identity information g
B v

L
“ Pelican Uses HTTP

* Pelican uses HTTP to move bytes.

T pelican — -bash — 80x24
F4HP7QL65F:pelican bbockelm$ curl -L https://director-caches.osgdev.chtc.io/s3.a

H H 1 .com/us-west-1/h /sfc/20211016/20211016_00z_anl. /2m_above_
* While Pelican Clients come U R e g e |

% Total % Received % Xferd Average Speed Time Time Time Current

bundled with nice-to-haves and We .., . wo e o o G0 Ui Totet sent | Lefc speed
prefer you use the Pelican Client, mwaisstostiom wooenss 177 777 7 T
any HTTP client suffices.
* Downloading an object? => GET
* Uploading an object? => PUT
* Want to know if the object exists? =>
HEAD

- Need a list of prefix-matches? => -
PROPFIND

L §
“ Client — CLI

* While curl can be used, we have quite a bit of specialized knowledge:
* Immutable objects means download resumption is straightforward.

* Parse the extra Director headers to understand where backup caches are. Retry as
necessary.

* From the Director headers, we know what tokens are required and how to
generate them.

* The Client can also do metadata operations (“stat”, “list”), recursive
upload/downloads of directories.

* The Client also serves as a ﬁlugin to HTCondor, coupling distributed high
throughput computing with distributed high throughput data
management/transfer.

* The Client is all in the same static binary as the server — the entire system
is the one file.

<
“ Client — Python

* While we love CLIs, we want to tap into the Python community
(which is more interactive/visualization focused).

* Accordingly, we started a FSSpec for Pelican.

e Summer student was able to use the FSSpec to run PyTorch against the
OSDF.

* Allows us to tap into more communities (particularly, a large
contingent of climate science).

https://github.com/PelicanPlatform/pelicanfs

; Pelican Data Flow

HTTP GET

Client

XRootD

Director

17

; Pelican Data Flow

Director

HTTP 307
Redirect

58

XRootD

Client

XRootD

18

; Pelican Data Flow

HTTP GET

XRootD

.

XRootD

19

; Pelican Data Flow

Client

&

XRootD

Director

.

XRootD

20

Pelican Data Flow

Client

&

XRootD

Director

HTTP 307
Redirect

HTTP GET

XRootD

21

; Pelican Data Flow

HTTP GET

Client

&

XRootD

&

XRootD

22

Pelican Data Flow

HTTP GET
Client

XRootD XRootD

Note that the protocol between the client, cache,
director, and origin is based on XRootD's HTTP plugin.

23

<
“ Example request from Client to Director

> GET /chtc/staging/jhiemstra/testfile HTTP/2
> Host: osdf-director.osg-htc.org

> User-Agent: curl/8.4.0

> Accept: */*

<
“ Example Director Response

<HTTP/2 307

< content-type: text/html; charset=utf-8

< date: Mon, 08 Jul 2024 17:17:17 GMT

< link: <https://osdf-uw-cache.svc.osg-htc.org:8443/chtc/staging/jhiemstra/testfile>; rel="duplicate"; pri=1;
depth=3, <https://stash-cache.osg.chtc.i0:8443/chtc/staging/jhiemstra/testfile>; rel="duplicate"; pri=2;
depth=3,...

< location: https://osdf-uw-cache.svc.osg-htc.org:8443/chtc/staging/jhiemstra/testfile

< x-pelican-authorization: issuer=https://chtc.cs.wisc.edu

< x-pelican-namespace: namespace=/chtc, require-token=true,
collections-url=https://origin-auth2000.chtc.wisc.edu:1095

< x-pelican-token-generation: issuer=https://chtc.cs.wisc.edu, max-scope-depth=3, strategy=0OAuth2
< content-length: 109

Example Director Response

<HTTP/2 307

< content-type: text/html; charset=utf-8

< date: Mon, 08 Jul 2024 17:17:17 GMT

< link: <https://osdf-uw-cache.svc.osg-htc.org:8443/chtc/staging/jhiemstra/testfile>; rel="duplicate"; pri=1;
depth=3, <https://stash-cache.osg.chtc.i0:8443/chtc/staging/jhiemstra/testfile>; rel="duplicate"; pri=2;
depth=3,...

< location: https://osdf-uw-cache.svc.osg-htc.org:8443/chtc/staging/jhiemstra/testfile

< x-pelican-authorization: issuer=https://chtc.cs.wisc.edu

< x-pelican-namespace: namespace=/chtc, require-token=true,
collections-url=https://origin-auth2000.chtc.wisc.edu:1095

< x-pelican-token-generation: issuer=https://chtc.cs.wisc.edu, max-scope-depth=3, strategy=0OAuth2
< content-length: 109

26

Example Director Response

<HTTP/2 307

< content-type: text/html; charset=utf-8

< date: Mon, 08 Jul 2024 17:17:17 GMT

< link: <https://osdf-uw-cache.svc.osg-htc.org:8443/chtc/staging/jhiemstra/testfile>; rel="duplicate"; pri=1;
depth=3, <https://stash-cache.osg.chtc.i0:8443/chtc/staging/jhiemstra/testfile>; rel="duplicate"; pri=2;
depth=3,...

< location: https://osdf-uw-cache.svc.osg-htc.org:8443/chtc/staging/jhiemstra/testfile

< x-pelican-authorization: issuer=https://chtc.cs.wisc.edu

< x-pelican-namespace: namespace=/chtc, require-token=true,
collections-url=https://origin-auth2000.chtc.wisc.edu:1095

< x-pelican-token-generation: issuer=https://chtc.cs.wisc.edu, max-scope-depth=3, strategy=0OAuth2
< content-length: 109

27

<
“ Director Response

* If you speak “plain HTTP”, you only understand the “blue” headers
and will successfully access the data.

* If you are the “Pelican client”, you can interpret the “red” headers:

* X-Pelican-Authorization: What token the client needs to successfully access
the data.

 X-Pelican-Namespace: What namespace the object is in. Informs client how
to reuse the director response; no need to return to director for each object.

* X-Pelican-Token-Generation: If the client doesn’t have a usable token, how
to receive one.

* Link: An ordered list of potential endpoints (caches) that can serve the
requests. Actually, a standard RFC header (RFC 6249).

<«

-,

[

"Batteries Included" Origin

4 Pelican Origin x +
c = pool-ap2140.chtc.wisc.edu:8444 igin/
Status

CMSD

Director

Director timestamp: 1720356158
Federation

Registry

Web Ul

XRootD
Self-test monitoring cycle failed: Test file transfer failed ¢

Contents of test file transfer body do not match upload: ¢

directory

Last Updated: Jul 7, 2024, 7:42 AM

Transfer Rate

1 Bytes Received (Bps) Bytet
18,000,000

16,000,000
14,000,000
12,000,000
10,000,000

8,000,000

¢
]

(]

* @O

Data Exports

R
[ospool/ap40/data

Storage Prefix

/mnt/cephfs/fuse/ospool/ap40/data

3 Pelican Configuration x +
25 ospool-ap2140.chtc.wisc.edu:8... ¥

Server

Server.EnableU!
True

Server.ExternalWebUrl

https://ospool-ap2140.chtc.wisc.edu:8444

Server.Hostname
ospool-ap2140.chtc.wisc.edu

Server.IssuerHostname

Server.IssuerJwks

Server.IssuerPort

0
Save Changes
Server.Issudh®

https://osa-htc.ora/osnool

® Finishupdate }

PublicRead X
Read X
Write v
Listing X
FallBackRead

r‘a o} ® Finishupdate }

We aim to simplify the art of running
an Origin:

* New web Ul for viewing, monitoring,
and configuring the Origin.
* Origin runs built-in health checks

* Can use “connection reversing” so
incoming firewall port / hosthame /
host certificate not needed.

<
“ "Batteries Included" Origin

4 Pelican Origin

Director timestamp: 1720356158

Transfer Rate

1 Bytes Received (Bps)
00

eeeeeeeeeeeeeeee

rrrrrrrrrrr

eeeeeeeeeeeeee

eeeeeeeeeeeee

eeeeeeeeeeeeee

We aim to simplify the art of running

an Origin:

* New web Ul for viewing, monitoring,
and configuring the Origin.

* Origin runs built-in health checks

* Can use “connection reversing” so
incoming firewall port / hosthame /
host certificate not needed.

* Our Goal — If you can set up a home
router, you can run an Origin

30

Origin Backends

Beyond the traditional POSIX storage, we’ve added the
following backends:

* S3: Works with any S3-compatible endpoint

* Generic HTTP: Integrate existing HTTP endpoint into a
federation

* Globus: Users must authorize sharing a collection to the
origin
* XRootD: Uses XRootD proxying module.

Note each of these backends can be used remotely — origin
does not need to be present at the local site.

amazon
S3

31

Globus Integration

* Globus’s “bread and butter” is
transferring files between two
Globus endpoints.

* Proprietary protocol (GridFTP-ish), no
guarantee of version stability.
* Historically, no such thing as

“downloading” from a Globus
endpoint — closed system.

* Recently, Globus added HTTP
functionality and a corresponding
API.

* Can even do “cur

III

if you'd like!

xrootd daemon

Storage

Globus
endpoint

Protocol

— Layer HTTP

(OSS)

32

Globus Integration

Globus Cloud
* To contact a Globus endpoint, you Services

need a valid Globus token.

* Globus uses traditional OAuth2 flows to
hand tokens to web applications.

* Idea: The Pelican daemon exports a web
interface — use that as the OAuth2

OAuth
client! Pelican client

daemon

* We then use our underlying HTTP
backend to communicate with
Globus.

* No Globus-specific code!

xrootd Globus
daemon endpoint

<
“ Globus — What works now, what doesn't

Currently Works:
* Read-only file operations.
* ‘Stat’ files

Future Work:
* Writes
* Directory listing (will need to Globus-specific code).

3
o

Pelican At Scale — A Look at the
OSDF

i Introducing the

The (Open Science Data Federation)
is the flagship federation for delivering
datasets from repositories to compute® in
an effective, scalable manner.

* ‘Compute’ is viewed broadly; everything from a browser to a
cluster.

< . .
“ Connecting your repository

The provides an “adapter plug”, connecting your science
repository to the national and international cyberinfrastructure.

The OSDF is

Using \) @ And integrates a wide
operated by @

range of open science,

nisia

Legend

@ Origin

i 9 Sites, 7 Institutions
Cache

V' 22 Sites, 15 Institutions

uinea

i Nvs f @ Cache and Origin

5 Sites, 5 Institutions

As part of the OSG Consortium’s Fabric of Services

; Pelican versus the OSDF Explained

What's the difference between "OSDF" and "Pelican"?
- Pelican is a tool for creating data federations
- The OSDF is one federation that's (mostly) underpinned by Pelican

J
< 1N

OSDF UWDF

Other
Federations

38

i by the numbers

Over the last 12 Data used by
months, the OSDF

transferred 15 ccience
2300s & collaborations &
~120 ospool

125 req/s

users

Converting OSDF to Pelican

* We are rolling out new services and protocols via
a new software stack ... onto the existing
infrastructure!

* E.g., a Pelican-based cache must be 100% compatible
with old and new origins and clients.

* No “flag day” option, cannot force client upgrades.

* Transition of services is >50% done.
 Slower than anticipated. Familiar story: periodically
pause to implement previously-unknown use cases,
cleanup old messes.

* Until we’ve 100% cutover, Pelican carries the burden
of supporting both old and new clients.

Microsoft Copilot’s
interpretation of “changing the
engine while the Pelican is
flying”

40

Main Website GH Repository

(=] =]
[=]

https://pelicanplatform.org https://github.com/pelicanplatform/pelican

Questions?

This project is supported by the National Science Foundation under Cooperative
Agreements OAC-2331480. Any opinions, findings, conclusions or recommendations
expressed in this material are those of the authors and do not necessarily reflect the views

of the National Science Foundation.

41

Further Reading

L
“ Globus Collections and Authorization

Pelican will:

* (One-time) Request user to perform an
OAL[ch flow with Globus,.approvmg the Pelican configuration YAML snippet:
origin’s access to the configured

collection. origin:
* Pelican receives refresh and access token, ~ GlobusCollectionID: "abc-123-some-key"
writes it to disk. - GlobusCollectionName: "Human-Friendly-Name"
. . . - GlobusClientIDFile: "/etc/pelican/glbs.client"
¢ (PerIOdlca”y) Pellcan runs refreSh ﬂOW to - GlobusClientSecretFile: "/etc/pelican/glbs.secret"

get a new access token, writes it to disk.

* (Per-request) HTTP backend loads globus
token from disk, adds it to the
Authorization header of the HTTP
request.

Globus and XRootD auth'z are decoupled

A note about pelican://-schemed

C
“ URLS

Pelican URLs let you specify an object from any
federation and namespace

pelican://osg-htc.org/weather/cloud. jpg

A note about pelican://-schemed

C
“ URLS

Pelican URLs let you specify an object from any
federation and namespace

pelican://osg-htc.org/weather/cloud. jpg

Defines a metadata lookup protocol

The federation’s hostname/root

The desired object name

Note that we also support "osdf://" and "stash://" schemes. The above is equivalent to:

osdf://

/weather/cloud.jpg

45

€ Pelican/OSDF URLs Give Us Query
“ Parameters

Pelican URLs let us interact with objects — they also let us choose how
we interact with those objects.

?directreads - skip the caching mechanism, get data straight
through the Origin

?recursive -download collections/directories recursively
?pack -upload/download using compression schemes on the fly

pack = < tar, tar.gz, tar.xz, zip >

E.g. pelican://osg-htc.org/weather/cloud. jpg?directread

