

Overview of the Pelican Platform

Justin Hiemstra

Research Software Engineer & Pelican Developer

Center for High Throughput Computing

Why Data Federations?

At its core, the Pelican Platform is a set of tools for creating/managing **Data Federations**. Our use cases dictate that:

- Data owners may come and go as they like
- Data owners have the ultimate authority to choose how their data is used/distributed
- Unified namespaces, decentralized storage to a user, everything feels like it's coming from the same source
- Through combining resources while respecting individual needs, we can tackle bigger challenges → Scalability!

5

Serving Two Sides of the Same Coin

Weather Data

Data might come from...

- A hard drive in the lab
- AWS/S3
- Globus
- An HTTP Server
- Wherever YOU keep your data!

I want cloud formation data!

Data might be needed for...

- A PyTorch dataloader
- Browser visualizations
- An HTCondor job
- Wherever YOU need your data!
 3

Serving Two Sides of the Same Coin

Weather Data

Pelican's job:

Data might come from...

- A hard drive in the lab
- AWS/S3
- Globus
- An HTTP Server
- Wherever YOU keep your data!

To connect data providers with data consumers

I want cloud formation data!

Data might be needed for...

- A PyTorch dataloader
- Browser visualizations
- An HTCondor job
- Wherever YOU need your data!
 4

Serving Two Sides of the Same Coin

Pelican Allows...

Dataset owners to federate their data from wherever it lives natively, granting access to whomever they choose. Data consumers to access and compute on data wherever they need it.

5

Zooming In – Technical Components

Pelican federations are made up of 6 core entities:

 Clients – used to interact with objects, perform uploads/downloads, etc.

- Clients used to interact with objects, perform uploads/downloads, etc.
- 2. Object Store where the data actually lives

- Clients used to interact with objects, perform uploads/downloads, etc.
- 2. Object Store where the data actually lives
- 3. Origins acts as a connector between federation and repository

- Clients used to interact with objects, perform uploads/downloads, etc.
- 2. Object Store where the data actually lives
- 3. Origins acts as a connector between federation and repository
- 4. Caches stores copies of objects Data in federation

- Clients used to interact with objects, perform uploads/downloads, etc.
- 2. Object Store where the data actually lives
- 3. Origins acts as a connector between federation and repository
- 4. Caches stores copies of objects Data in federation
- 5. Director tells people where to get the data they're looking for

- Clients used to interact with objects, perform uploads/downloads, etc.
- 2. Object Store where the data actually lives
- 3. Origins acts as a connector between federation and repository
- 4. Caches stores copies of objects I in federation
- 5. Director tells people where to get the data they're looking for
- 6. **Registry** persistent storage for identity information

Pelican Uses HTTP

- Pelican uses HTTP to move bytes.
- While Pelican Clients come bundled with nice-to-haves and we prefer you use the Pelican Client, any HTTP client suffices.
 - Downloading an object? => GET
 - Uploading an object? => PUT
 - Want to know if the object exists? => HEAD
 - Need a list of prefix-matches? => PROPFIND

•	•					pelican — -	bash — 8	0×24			
F4HF mazo nd/1	P7QL65F Dnaws.c	:peli com/us above	.can bbo s-west-1 e ground	ckel /hrr /TMF	lm\$ cur] rzarr/s 2/6.2 >	L –L htt sfc/2021 /dev/nu	ps://di 1016/20 11	rector-c 211016_0	aches.osg 00z_anl.za	dev.chto rr/2m_ab	.io/s3.a] ove_grou
%	Total	%	Receive	d %	Xferd	Average Dload	Speed Upload	Time Total	Time Spent	Time Left	Current Speed
100 100 E4HE	186 22083 2701 658	100 100 :neli	186 22083 can_bbo	0 0 ckel	0 0	2534 97k	0 - 0 -	::	::	::	2547 1960k

Client – CLI

- While curl can be used, we have quite a bit of specialized knowledge:
 - Immutable objects means download resumption is straightforward.
 - Parse the extra Director headers to understand where backup caches are. Retry as necessary.
 - From the Director headers, we know what tokens are required and how to generate them.
- The Client can also do metadata operations ("stat", "list"), recursive upload/downloads of directories.
- The Client also serves as a plugin to HTCondor, coupling distributed high throughput computing with distributed high throughput data management/transfer.
- The Client is all in the same static binary as the server the entire system is the one file.

Client – Python

- While we love CLIs, we want to tap into the Python community (which is more interactive/visualization focused).
- Accordingly, we started a **FSSpec for Pelican**.
 - Summer student was able to use the FSSpec to run PyTorch against the OSDF.
- Allows us to tap into more communities (particularly, a large contingent of climate science).

Pelican Data Flow

Director

open()

Note that the protocol between the client, cache, director, and origin is based on XRootD's HTTP plugin.

open()

data

Example request from Client to Director

> GET /chtc/staging/jhiemstra/testfile HTTP/2
> Host: osdf-director.osg-htc.org
> User-Agent: curl/8.4.0
> Accept: */*

Example Director Response

< HTTP/2 307

< content-type: text/html; charset=utf-8

< date: Mon, 08 Jul 2024 17:17:17 GMT

< link: <https://osdf-uw-cache.svc.osg-htc.org:8443/chtc/staging/jhiemstra/testfile>; rel="duplicate"; pri=1; depth=3, <https://stash-cache.osg.chtc.io:8443/chtc/staging/jhiemstra/testfile>; rel="duplicate"; pri=2; depth=3,...

< location: https://osdf-uw-cache.svc.osg-htc.org:8443/chtc/staging/jhiemstra/testfile

- < x-pelican-authorization: issuer=https://chtc.cs.wisc.edu
- < x-pelican-namespace: namespace=/chtc, require-token=true,

collections-url=https://origin-auth2000.chtc.wisc.edu:1095

< x-pelican-token-generation: issuer=https://chtc.cs.wisc.edu, max-scope-depth=3, strategy=OAuth2 < content-length: 109

Example Director Response

< HTTP/2 307

< content-type: text/html; charset=utf-8

< date: Mon, 08 Jul 2024 17:17:17 GMT

< link: <https://osdf-uw-cache.svc.osg-htc.org:8443/chtc/staging/jhiemstra/testfile>; rel="duplicate"; pri=1; depth=3, <https://stash-cache.osg.chtc.io:8443/chtc/staging/jhiemstra/testfile>; rel="duplicate"; pri=2; depth=3,...

- < location: https://osdf-uw-cache.svc.osg-htc.org:8443/chtc/staging/jhiemstra/testfile
- < x-pelican-authorization: issuer=https://chtc.cs.wisc.edu
- < x-pelican-namespace: namespace=/chtc, require-token=true,
- collections-url=https://origin-auth2000.chtc.wisc.edu:1095
- < x-pelican-token-generation: issuer=https://chtc.cs.wisc.edu, max-scope-depth=3, strategy=OAuth2 < content-length: 109

Example Director Response

< HTTP/2 307

< content-type: text/html; charset=utf-8

< date: Mon, 08 Jul 2024 17:17:17 GMT

< link: <https://osdf-uw-cache.svc.osg-htc.org:8443/chtc/staging/jhiemstra/testfile>; rel="duplicate"; pri=1; depth=3, <https://stash-cache.osg.chtc.io:8443/chtc/staging/jhiemstra/testfile>; rel="duplicate"; pri=2; depth=3,...

- < location: https://osdf-uw-cache.svc.osg-htc.org:8443/chtc/staging/jhiemstra/testfile
- < x-pelican-authorization: issuer=https://chtc.cs.wisc.edu
- < x-pelican-namespace: namespace=/chtc, require-token=true,

collections-url=https://origin-auth2000.chtc.wisc.edu:1095

< x-pelican-token-generation: issuer=https://chtc.cs.wisc.edu, max-scope-depth=3, strategy=OAuth2 < content-length: 109

Director Response

- If you speak "plain HTTP", you only understand the "blue" headers and will successfully access the data.
- If you are the "Pelican client", you can interpret the "red" headers:
 - X-Pelican-Authorization: What token the client needs to successfully access the data.
 - X-Pelican-Namespace: What namespace the object is in. Informs client how to reuse the director response; no need to return to director for each object.
 - X-Pelican-Token-Generation: If the client doesn't have a usable token, how to receive one.
 - Link: An ordered list of potential endpoints (caches) that can serve the requests. Actually, a standard RFC header (RFC 6249).

"Batteries Included" Origin

	C sopool-ap2140.chtc.wisc.edu:8444/view/ori	gin/		☆ 🐻 호	😤 Finish update	
8	Status		Data Exports			
۹.	CMSD		Federation Prefix PublicF /ospool/ap40/data Read			
	Director Director timestamp: 1720356158		Storage Perfex /mnt/cephfs/fuse/ospool/ap40/data	Write V		
	Federation			FallBackRead 🗸		
	Registry					
	Web UI					
	/pelican/monitoring/self-test-2024-07-07T07:42:45-05: directory Last Updated: Jul 7, 2024, 7:42 AM		Server			
	Transfer Rate	0	True			
	Bytes Received (Bps) Bytes	55	Server.ExternalWebUrl https://ospool-ap2140.chtc.wisc.edu:8444			
•	16,000,000 14,000,000 12,000,000 10,000,000		ospo	r.Hostname col-ap2140.chtc.wisc.edu	?	
/	8,000,000		Con	(or loguer Hestnerge	2	
			Serv		f	
			Serv	rer.lssuerJwks	?	
		6	Serv Serve 0	rer.lssuerPost	?	

We aim to simplify the art of running an Origin:

- New web UI for viewing, monitoring, and configuring the Origin.
- Origin runs built-in health checks
- Can use "connection reversing" so incoming firewall port / hostname / host certificate not needed.

"Batteries Included" Origin

• • • Pelican Origin × +							
← → ♂ 😋 ospool-ap2140.chtc.wisc.edu:8444/view/o	rigin/	🇙 📅 호 🦻 🖬	iish update				
Status		Data Exports					
CMSD		Federation Prefix PublicR	ead X				
Director Director timestamp: 1720356158		Storage Prefix Write /mnt/cephfs/fuse/ospool/ap40/data	×				
Federation		FallBack	ckRead 🗸				
Registry							
Web UI							
XRootD Self-test monitoring cycle failed: Test file transfer faile Contents of test file transfer body do not match uplos /pelicar/monitoring/self-test-2024-07-07T07:42:45-0/ directory	d (id: ← → C	Pelican Configuration x +	ish update				
Last Updated: Jul 7, 2024, 7:42 AM	s 🔰	erver					
Transfer Rate	0	True					
Bytes Received (Bps) By	rtes	Server.ExternalWebUrl https://ospool-ap2140.chtc.wisc.edu:8444	?				
16,000,000 14,000,000 12,000,000 (2) 10,000,000		Server.Hostname ospool-ap2140.chtc.wisc.edu	?				
8,000,000		Server.IssuerHostname	?				
		Server.IssuerJwks	?				
		0 Save Changes SAVE CLEAR	?				
		Server.Issueren	2				

We aim to simplify the art of running an Origin:

- New web UI for viewing, monitoring, and configuring the Origin.
- Origin runs built-in health checks
- Can use "connection reversing" so incoming firewall port / hostname / host certificate not needed.
- Our Goal If you can set up a home router, you can run an Origin

Origin Backends

Beyond the traditional POSIX storage, we've added the following backends:

- S3: Works with any S3-compatible endpoint
- **Generic HTTP**: Integrate existing HTTP endpoint into a federation
- **Globus**: Users must authorize sharing a collection to the origin
- XRootD: Uses XRootD proxying module.

Note each of these backends can be used remotely – origin does not need to be present at the local site.

Globus Integration

- Globus's "bread and butter" is transferring files between two Globus endpoints.
 - Proprietary protocol (GridFTP-ish), no guarantee of version stability.
 - Historically, no such thing as "downloading" from a Globus endpoint – closed system.
- Recently, Globus added HTTP functionality and a corresponding API.
 - Can even do "curl" if you'd like!

Globus Integration

- To contact a Globus endpoint, you need a valid Globus token.
 - Globus uses traditional OAuth2 flows to hand tokens to web applications.
 - Idea: The Pelican daemon exports a web interface – use that as the OAuth2 client!
- We then use our underlying HTTP backend to communicate with Globus.
 - No Globus-specific code!

Globus – What works now, what doesn't

Currently Works:

- Read-only file operations.
- 'Stat' files

Future Work:

- Writes
- Directory listing (will need to Globus-specific code).

Pelican At Scale – A Look at the OSDF

Introducing the **OSDF**

The OSDF (Open Science Data Federation) is the flagship federation for delivering datasets from repositories to compute* in an effective, scalable manner.

* 'Compute' is viewed broadly; everything from a browser to a cluster.

Connecting your repository

The OSDF provides an "adapter plug", connecting your science repository to the national and international cyberinfrastructure.

The OSDF is operated by PATh

Using hardware from

And integrates a wide range of open science,

As part of the OSG Consortium's Fabric of Services

Pelican versus the OSDF Explained

What's the difference between "OSDF" and "Pelican"?

- Pelican is a tool for creating *data federations*
- The OSDF is one federation that's (mostly) underpinned by Pelican

OSDF by the numbers

Over the last 12 Data used by months, the OSDF transferred **15** science

230_{РВ &} 125 req/s 15 science collaborations & ~120 OSPool users

Converting OSDF to Pelican

- We are rolling out new services and protocols via a new software stack ... onto the existing infrastructure!
 - E.g., a Pelican-based cache must be 100% compatible with old and new origins and clients.
 - No "flag day" option, cannot force client upgrades.
- Transition of services is >50% done.
 - Slower than anticipated. Familiar story: periodically pause to implement previously-unknown use cases, cleanup old messes.
 - Until we've 100% cutover, Pelican carries the burden of supporting both old and new clients.

Microsoft Copilot's interpretation of "changing the engine while the Pelican is flying"

Main Website

https://pelicanplatform.org

GH Repository

https://github.com/pelicanplatform/pelican

Questions?

This project is supported by the National Science Foundation under Cooperative Agreements OAC-2331480. Any opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Further Reading

Globus Collections and Authorization

Pelican will:

- (One-time) Request user to perform an OAuth2 flow with Globus, approving the origin's access to the configured collection.
 - Pelican receives refresh and access token, writes it to disk.
- (Periodically) Pelican runs refresh flow to get a new access token, writes it to disk.
- (Per-request) HTTP backend loads globus token from disk, adds it to the Authorization header of the HTTP request.

Globus and XRootD auth'z are decoupled

Pelican configuration YAML snippet:

Origin:

- GlobusCollectionID: "abc-123-some-key"
- GlobusCollectionName: "Human-Friendly-Name"
- GlobusClientIDFile: "/etc/pelican/glbs.client"
- GlobusClientSecretFile: "/etc/pelican/glbs.secret"

A note about pelican://-schemed URLs

Pelican URLs let you specify an object from any federation and namespace

pelican://osg-htc.org/weather/cloud.jpg

A note about pelican://-schemed URLs

Pelican URLs let you specify an object from any federation and namespace

pelican://osg-htc.org/weather/cloud.jpg

Defines a metadata lookup protocol The federation's hostname/root The desired object name

Note that we also support "osdf://" and "stash://" schemes. The above is equivalent to:

osdf:///weather/cloud.jpg

Pelican/OSDF URLs Give Us Query Parameters

Pelican URLs let us interact with objects – they also let us choose *how* we interact with those objects.

- ?directreads skip the caching mechanism, get data straight through the Origin
- ?recursive download collections/directories recursively
- ?pack upload/download using compression schemes on the fly

pack = < tar, tar.gz, tar.xz, zip >

E.g. pelican://osg-htc.org/weather/cloud.jpg?directread