
Overview of the Pelican
Platform

Justin Hiemstra

Research Software Engineer & Pelican Developer

Center for High Throughput Computing

1

Why Data Federations?

At its core, the Pelican Platform is a set of
tools for creating/managing Data
Federations. Our use cases dictate that:

• Data owners may come and go as they like
• Data owners have the ultimate authority to

choose how their data is used/distributed
• Unified namespaces, decentralized storage –

to a user, everything feels like it’s coming
from the same source

• Through combining resources while
respecting individual needs, we can tackle
bigger challenges → Scalability!

2

I want cloud
formation data!

Weather Data

Data might come from…
• A hard drive in the lab
• AWS/S3
• Globus
• An HTTP Server
• Wherever YOU keep your

data!

Data might be needed for…
• A PyTorch dataloader
• Browser visualizations
• An HTCondor job
• Wherever YOU need your

data!

Serving Two Sides of the Same Coin

3

I want cloud
formation data!

Weather Data

Data might come from…
• A hard drive in the lab
• AWS/S3
• Globus
• An HTTP Server
• Wherever YOU keep your

data!

Pelican's job:

To connect data providers
with data consumers

Data might be needed for…
• A PyTorch dataloader
• Browser visualizations
• An HTCondor job
• Wherever YOU need your

data!

Serving Two Sides of the Same Coin

4

Dataset owners to
federate their data from
wherever it lives natively,
granting access to
whomever they choose.

Data consumers to
access and compute
on data wherever
they need it.

Pelican Allows…
Serving Two Sides of the Same Coin

5

Zooming In –
Technical Components

6

Origins, Caches, Registries, and Directors,
OH MY!

Federation Central Services

Registry Director

Origin Cache

Data

Pelican federations are made up of 6 core entities:

7

Origins, Caches, Registries, and Directors,
OH MY!

Pelican federations are made up of 6 core entities:
Federation Central Services

Registry Director

Origin Cache

1. Clients – used to interact with
objects, perform
uploads/downloads, etc.

Data

8

Origins, Caches, Registries, and Directors,
OH MY!

Federation Central Services

Registry Director

Origin Cache

1. Clients – used to interact with
objects, perform
uploads/downloads, etc.

2. Object Store – where the data
actually lives

Data

Pelican federations are made up of 6 core entities:

9

Origins, Caches, Registries, and Directors,
OH MY!

Federation Central Services

Registry Director

Origin Cache

1. Clients – used to interact with
objects, perform
uploads/downloads, etc.

2. Object Store – where the data
actually lives

3. Origins – acts as a connector
between federation and repository

Data

Pelican federations are made up of 6 core entities:

10

Origins, Caches, Registries, and Directors,
OH MY!

Federation Central Services

Registry Director

Origin Cache

1. Clients – used to interact with
objects, perform
uploads/downloads, etc.

2. Object Store – where the data
actually lives

3. Origins – acts as a connector
between federation and repository

4. Caches – stores copies of objects
in federation

Data

Data

Pelican federations are made up of 6 core entities:

11

Origins, Caches, Registries, and Directors,
OH MY!

Federation Central Services

Registry Director

Origin Cache

1. Clients – used to interact with
objects, perform
uploads/downloads, etc.

2. Object Store – where the data
actually lives

3. Origins – acts as a connector
between federation and repository

4. Caches – stores copies of objects
in federation

5. Director – tells people where to
get the data they're looking for

Data

Data

Pelican federations are made up of 6 core entities:

12

Origins, Caches, Registries, and Directors,
OH MY!

Federation Central Services

Registry Director

Origin Cache

1. Clients – used to interact with
objects, perform
uploads/downloads, etc.

2. Object Store – where the data
actually lives

3. Origins – acts as a connector
between federation and repository

4. Caches – stores copies of objects
in federation

5. Director – tells people where to
get the data they're looking for

6. Registry – persistent storage for
identity information

Data

Data

Pelican federations are made up of 6 core entities:

13

• Pelican uses HTTP to move bytes.

• While Pelican Clients come
bundled with nice-to-haves and we
prefer you use the Pelican Client,
any HTTP client suffices.

• Downloading an object? => GET

• Uploading an object? => PUT

• Want to know if the object exists? =>
HEAD

• Need a list of prefix-matches? =>
PROPFIND

Pelican Uses HTTP

14

• While curl can be used, we have quite a bit of specialized knowledge:
• Immutable objects means download resumption is straightforward.
• Parse the extra Director headers to understand where backup caches are. Retry as

necessary.
• From the Director headers, we know what tokens are required and how to

generate them.

• The Client can also do metadata operations (“stat”, “list”), recursive
upload/downloads of directories.

• The Client also serves as a plugin to HTCondor, coupling distributed high
throughput computing with distributed high throughput data
management/transfer.

• The Client is all in the same static binary as the server – the entire system
is the one file.

Client – CLI

15

• While we love CLIs, we want to tap into the Python community
(which is more interactive/visualization focused).

• Accordingly, we started a FSSpec for Pelican.
• Summer student was able to use the FSSpec to run PyTorch against the

OSDF.

• Allows us to tap into more communities (particularly, a large
contingent of climate science).

Client – Python

16

https://github.com/PelicanPlatform/pelicanfs

Director

Client Cache Origin

HTTP GET

Pelican Data Flow

17

Director

Client Cache Origin

HTTP 307
Redirect

Pelican Data Flow

18

Director

Client Cache Origin
HTTP GET

Pelican Data Flow

19

Director

Client Cache Origin

HTTP GET

Pelican Data Flow

20

Director

Client Cache Origin

HTTP 307
Redirect

HTTP GET

Pelican Data Flow

21

Director

Client Cache Origin
HTTP GET

open()

Pelican Data Flow

22

Director

Client Cache Origin
HTTP GET

data datadata

Note that the protocol between the client, cache,
director, and origin is based on XRootD's HTTP plugin.

Pelican Data Flow

23

open()

> GET /chtc/staging/jhiemstra/testfile HTTP/2
> Host: osdf-director.osg-htc.org
> User-Agent: curl/8.4.0
> Accept: */*

Example request from Client to Director

24

< HTTP/2 307
< content-type: text/html; charset=utf-8
< date: Mon, 08 Jul 2024 17:17:17 GMT
< link: <https://osdf-uw-cache.svc.osg-htc.org:8443/chtc/staging/jhiemstra/testfile>; rel="duplicate"; pri=1;
depth=3, <https://stash-cache.osg.chtc.io:8443/chtc/staging/jhiemstra/testfile>; rel="duplicate"; pri=2;
depth=3,...
< location: https://osdf-uw-cache.svc.osg-htc.org:8443/chtc/staging/jhiemstra/testfile
< x-pelican-authorization: issuer=https://chtc.cs.wisc.edu
< x-pelican-namespace: namespace=/chtc, require-token=true,
collections-url=https://origin-auth2000.chtc.wisc.edu:1095
< x-pelican-token-generation: issuer=https://chtc.cs.wisc.edu, max-scope-depth=3, strategy=OAuth2
< content-length: 109

Example Director Response

25

< HTTP/2 307
< content-type: text/html; charset=utf-8
< date: Mon, 08 Jul 2024 17:17:17 GMT
< link: <https://osdf-uw-cache.svc.osg-htc.org:8443/chtc/staging/jhiemstra/testfile>; rel="duplicate"; pri=1;
depth=3, <https://stash-cache.osg.chtc.io:8443/chtc/staging/jhiemstra/testfile>; rel="duplicate"; pri=2;
depth=3,...
< location: https://osdf-uw-cache.svc.osg-htc.org:8443/chtc/staging/jhiemstra/testfile
< x-pelican-authorization: issuer=https://chtc.cs.wisc.edu
< x-pelican-namespace: namespace=/chtc, require-token=true,
collections-url=https://origin-auth2000.chtc.wisc.edu:1095
< x-pelican-token-generation: issuer=https://chtc.cs.wisc.edu, max-scope-depth=3, strategy=OAuth2
< content-length: 109

Example Director Response

26

< HTTP/2 307
< content-type: text/html; charset=utf-8
< date: Mon, 08 Jul 2024 17:17:17 GMT
< link: <https://osdf-uw-cache.svc.osg-htc.org:8443/chtc/staging/jhiemstra/testfile>; rel="duplicate"; pri=1;
depth=3, <https://stash-cache.osg.chtc.io:8443/chtc/staging/jhiemstra/testfile>; rel="duplicate"; pri=2;
depth=3,...
< location: https://osdf-uw-cache.svc.osg-htc.org:8443/chtc/staging/jhiemstra/testfile
< x-pelican-authorization: issuer=https://chtc.cs.wisc.edu
< x-pelican-namespace: namespace=/chtc, require-token=true,
collections-url=https://origin-auth2000.chtc.wisc.edu:1095
< x-pelican-token-generation: issuer=https://chtc.cs.wisc.edu, max-scope-depth=3, strategy=OAuth2
< content-length: 109

Example Director Response

27

• If you speak “plain HTTP”, you only understand the “blue” headers
and will successfully access the data.

• If you are the “Pelican client”, you can interpret the “red” headers:
• X-Pelican-Authorization: What token the client needs to successfully access

the data.

• X-Pelican-Namespace: What namespace the object is in. Informs client how
to reuse the director response; no need to return to director for each object.

• X-Pelican-Token-Generation: If the client doesn’t have a usable token, how
to receive one.

• Link: An ordered list of potential endpoints (caches) that can serve the
requests. Actually, a standard RFC header (RFC 6249).

Director Response

28

"Batteries Included" Origin

We aim to simplify the art of running
an Origin:

• New web UI for viewing, monitoring,
and configuring the Origin.

• Origin runs built-in health checks

• Can use “connection reversing” so
incoming firewall port / hostname /
host certificate not needed.

29

"Batteries Included" Origin

We aim to simplify the art of running
an Origin:

• New web UI for viewing, monitoring,
and configuring the Origin.

• Origin runs built-in health checks

• Can use “connection reversing” so
incoming firewall port / hostname /
host certificate not needed.

• Our Goal – If you can set up a home
router, you can run an Origin

30

Site

Beyond the traditional POSIX storage, we’ve added the
following backends:

• S3: Works with any S3-compatible endpoint

• Generic HTTP: Integrate existing HTTP endpoint into a
federation

• Globus: Users must authorize sharing a collection to the
origin

• XRootD: Uses XRootD proxying module.

Note each of these backends can be used remotely – origin
does not need to be present at the local site.

Origin

Origin Backends

31

• Globus’s “bread and butter” is
transferring files between two
Globus endpoints.

• Proprietary protocol (GridFTP-ish), no
guarantee of version stability.

• Historically, no such thing as
“downloading” from a Globus
endpoint – closed system.

• Recently, Globus added HTTP
functionality and a corresponding
API.

• Can even do “curl” if you’d like!

xrootd daemon

Protocol
Layer

Storage
Layer
(OSS)

HTTP

xrootd

HTTP
Globus

endpoint

Globus Integration

32

• To contact a Globus endpoint, you
need a valid Globus token.

• Globus uses traditional OAuth2 flows to
hand tokens to web applications.

• Idea: The Pelican daemon exports a web
interface – use that as the OAuth2
client!

• We then use our underlying HTTP
backend to communicate with
Globus.

• No Globus-specific code!
xrootd

daemon
HTTP HTTP

Globus
endpoint

Token
file

Pelican
daemon

OAuth
client

Globus Cloud
Services

Globus Integration

33

Currently Works:

• Read-only file operations.

• ‘Stat’ files

Future Work:

• Writes

• Directory listing (will need to Globus-specific code).

Globus – What works now, what doesn't

34

Pelican At Scale – A Look at the
OSDF

35

Introducing the

The (Open Science Data Federation)
is the flagship federation for delivering

datasets from repositories to compute* in
an effective, scalable manner.

* ‘Compute’ is viewed broadly; everything from a browser to a
cluster.

36

The provides an “adapter plug”, connecting your science
repository to the national and international cyberinfrastructure.

The OSDF is
operated by

Using
hardware from

And integrates a wide
range of open science,

37

As part of the OSG Consortium’s Fabric of Services

Connecting your repository

What's the difference between "OSDF" and "Pelican"?

- Pelican is a tool for creating data federations

- The OSDF is one federation that's (mostly) underpinned by Pelican

UWDF Other
Federations

Pelican versus the OSDF Explained

38

 by the numbers

Over the last 12
months, the OSDF

transferred

230PB &

125 req/s

Data used by

15 science

collaborations &

~120 OSPool

users

39

Converting OSDF to Pelican

• We are rolling out new services and protocols via
a new software stack … onto the existing
infrastructure!

• E.g., a Pelican-based cache must be 100% compatible
with old and new origins and clients.

• No “flag day” option, cannot force client upgrades.

• Transition of services is >50% done.
• Slower than anticipated. Familiar story: periodically

pause to implement previously-unknown use cases,
cleanup old messes.

• Until we’ve 100% cutover, Pelican carries the burden
of supporting both old and new clients.

Microsoft Copilot’s
interpretation of “changing the
engine while the Pelican is
flying”

40

Questions?
This project is supported by the National Science Foundation under Cooperative
Agreements OAC-2331480. Any opinions, findings, conclusions or recommendations
expressed in this material are those of the authors and do not necessarily reflect the views
of the National Science Foundation.

41

Main Website GH Repository

https://pelicanplatform.org https://github.com/pelicanplatform/pelican

Further Reading

42

Pelican will:
• (One-time) Request user to perform an

OAuth2 flow with Globus, approving the
origin’s access to the configured
collection.

• Pelican receives refresh and access token,
writes it to disk.

• (Periodically) Pelican runs refresh flow to
get a new access token, writes it to disk.

• (Per-request) HTTP backend loads globus
token from disk, adds it to the
Authorization header of the HTTP
request.

Globus and XRootD auth'z are decoupled

Pelican configuration YAML snippet:

Origin:
 - GlobusCollectionID: "abc-123-some-key"
 - GlobusCollectionName: "Human-Friendly-Name"
 - GlobusClientIDFile: "/etc/pelican/glbs.client"
 - GlobusClientSecretFile: "/etc/pelican/glbs.secret"

Globus Collections and Authorization

43

pelican://osg-htc.org/weather/cloud.jpg

Pelican URLs let you specify an object from any
federation and namespace

A note about pelican://-schemed
URLs

44

pelican://osg-htc.org/weather/cloud.jpg

 Defines a metadata lookup protocol

 The federation’s hostname/root

 The desired object name

Note that we also support "osdf://" and "stash://" schemes. The above is equivalent to:

osdf:// /weather/cloud.jpg

A note about pelican://-schemed
URLs

Pelican URLs let you specify an object from any
federation and namespace

45

Pelican/OSDF URLs Give Us Query
Parameters

Pelican URLs let us interact with objects – they also let us choose how
we interact with those objects.

- ?directreads - skip the caching mechanism, get data straight
through the Origin

- ?recursive - download collections/directories recursively
- ?pack - upload/download using compression schemes on the fly

pack = < tar, tar.gz, tar.xz, zip >

E.g. pelican://osg-htc.org/weather/cloud.jpg?directread

46

