
The XENONnT data handling
with Rucio

L. Scotto Lavina, L. Yuan
on behalf of the XENON Computing team

with the support of OSG/PATh
M. Rynge, J. Stephen & P. Paschos

7th Rucio Community Workshop, October 1st, 2024, San Diego, US

Table of contents

● Overview of XENONnT on:
○ data format
○ cyber infrastructure
○ data pipelines
○ data processing software

● List of criticalities and space for new features in Rucio

Raw -data format

● A run is a ~1-hour long data acquisition
● Raw data of a single run are made by a directory

containing several file chunks, plus a very light (ascii)
json file to map the chunks

● To improve the performances of data processing, the
chunk size must be smaller than the RAM associated
to a core

● Typical Science Search Run = 56 GB → O(10) chunks
● Typical Calibration Run = 524 GB → O(100) chunks
● Drawback: large number of small files
● Mitigation for tape-based storage: tarballing the

chunks of an entire run

Dataset directory
 Chunk 1
 Chunk 2
 . . .
 Chunk N
 Metadata.json

Dataset directory
 AllChunks.tar
 Metadata.json

tarballing

Rucio Data IDentifier (DID) → scope:name

rucio list-rules xnt_050297:raw_records-rfzvpzj4mf

Scope
(detector and run number)

Name
(data type and hash)

DID
(dataset)

Raw data in Rucio

● A run is stored as a dataset
● The Chunks and the metadata file are uploaded as files attached to that

dataset
● DIDs are:

xnt_<runnumber>:raw_records-<hash>

xnt_<runnumber>:raw_records-<hash>-000000

xnt_<runnumber>:raw_records-<hash>-000001

…

xnt_<runnumber>:raw_records-<hash>-<nchunks-1>

xnt_<runnumber>:raw_records-<hash>-metadata.json

The reconstruction code, Straxen, first executed on raw data, produces at different stages of
the computation different kinds of processed data, with decreasing size

The XENONnT data processing chain

Data Kind
Description

Typical
Science Search

1-hour Run

Intense
Calibration

1-hour
Run

events-level time-clustered peaks <0.1 GB <0.1 GB

peaks-level time-clustered PMT waveforms 2.4 GB 46 GB

peaklets preliminary time-clustered
PMT waveforms 8 GB 90 GB

raw_records recorded PMT waveforms in
each channel 56 GB 524 GBlowest level

highest level

https://github.com/XENONnT/straxen/

Advantages:

● If a reconstruction
algorithm changes, no
need to reconstruct from
scratch

● Users don’t need to
download the entire
structure to perform a
specific study

Each level of a given data kind is composed by many data types sharing the same indexing
system

A complex data structure

An example : data
types for peaks

Drawbacks:

● Increased complexity (failures recovery more hard to follow and debug)
● High number of small files

EU

CCIN2P3

CCIN2P3 (TAPE)
CCIN2P32 (DISK)

NIKHEF

NIKHEF2 (DISK)

CNAF

TAPE_CNAF (TAPE)
CNAF (DISK)

SURFSARA

SURFSARA (TAPE)
SURFSARA2 (DISK)

US

LNGS

US

OSG

DAQ
Underground

EBs
66 TB

Chicago

UC_MIDWAY

UC_OSG

Datamanager
Surface

LNGS
66 TB

Jupyter

UC_DALI

OSG

SDSC_NSDF

Daily online data pipeline

Rucio
uploads

Replication
rules

Raw data are processed
online by DAQ machines and
buffered (66 TB capacity)

Both raw data and processed
data are uploaded on-site
(dedicated local RSE 66TB
capacity)

They are then dispatched in
different RSEs (replication
rules) depending on the level
(processed data at Chicago)

With a second conditional
rule, we instruct Rucio to
perform a second copy of raw
data in another RSE (usually
one copy in US, one in EU)

Processed data
Raw data

Two data-processing pipelines
Massive raw_records →
event processing (~once per
year)

raw_records from specific
Science Campaigns are
reprocessed using OSG and
EGI resources. All data types,
up to events-level , are
generated.

Massive peaklets (or
peak-level) → event
processing (more frequent)

peaklets or peaks-level files
from specific Science
Campaigns are reprocessed
using OSG and/or UChicago
resources. All data types
“above” the starting ones are
regenerated.

EU

CCIN2P3

CCIN2P3 (TAPE)
CCIN2P32 (DISK)

NIKHEF

NIKHEF2 (DISK)

CNAF

TAPE_CNAF (TAPE)
CNAF (DISK)

SURFSARA

SURFSARA (TAPE)
SURFSARA2 (DISK)

US OSG
Chicago

UC_MIDWAY

UC_OSG

Jupyter

UC_DALI

OSG

SDSC_NSDF

Processed data
Raw data

OSG CPUs

Data management software

To manage XENONnT data, we developed a package called aDMIX (Advanced Data Management in
XENONnT):

https://github.com/XENONnT/admix

● it is a sort of wrapper of Rucio
● it takes care of data uploading, data moving, data cleaning, data tarballing
● it keeps Rucio catalogue synchronised with our run Database (using MongoDB)

https://github.com/XENONnT/admix

Data reprocessing software

To process the data, we use a XENONnT package called outsource:

https://github.com/XENONnT/outsource/

● It takes care of submitting jobs to the GRID
● These jobs will be sent to one of the slots (WMS GlideIN slots)
● Input is queried with Rucio and downloaded to the local storage of the computing node
● Once processed, data are uploaded to Rucio and sent to the desired RSE

The software/packages that are involved are:

● CI Connect is used for the authentication
● Pegasus for workflow management
● GlideinWMS for resource provisioning
● HTCondor for job scheduling

https://github.com/XENONnT/outsource/

Critical points where Rucio could help

We identified few points for which we believe there is space for new features in Rucio
Most of them are meant to improve the handling of possible low performances of RSE sites:

○ Copy timeouts during data download (from GRID to local disk)
○ recovery of failed uploads (e.g. short network issues)
○ pre-staging of files for tape-based RSEs

Timeouts during data download

When downloading data from a busy disk-based RSE, we notice that downloading using CLI
is more robust than calling similar instructions with the python client

CLI command :
rucio download xnt_050663:raw_records-rfzvpzj4mf --rse UC_OSG_USERDISK

Python client :
rucio.client.downloadclient.download_dids(did_list, num_threads=num_threads)

We played with the download_dids parameters (transfer_timeout, transfer_speed_timeout)
unsuccessfully

Downloading with python client, we have a higher rate of timeouts with respect to CLI

We know that timeouts depend on which backend is doing the actual copy (gfal, etc…) but
we are wondering if download_dids could have implemented an automatic retry system

Recovery of failed uploads

If a network issue happens during an upload, a dataset remains partially uploaded. On the
same dataset, we can observe (even at the same time) the following cases:

1. A file copied in the RSE, but not appearing in the catalogue
2. A file appearing in the catalogue (hence, a DID associated to it), but the file is not copied

in the RSE

We would like to know what is the best way to :
● either resume the upload, but this would require to:

○ 1) properly add in the catalogue what has been already copied (attach file)
○ 2) physically copy a file whose DID has been already included in the

catalogue
● or properly delete the whole dataset with all attached files and try the upload again

In both cases, we found issues with DID claiming to exist already even if files are not present
in the RSE. Removing the DID does not help, like if the DID is still somewhere in the Rucio
database.
We need help to implement a reliable clean up procedure to retry an upload

Recovery of failed uploads (our solution)
So far we fixed with a function, called preupload, that does the following:

def preupload(path, rse, did):

"""

A function supposed to be run before upload to avoid orphan files failing the upload.

It does the following

 - It adds the dataset associated to the did we wanted to upload

 - It loops over all local files to be uploaded, so to know their number and their names.

 For each file, it searches in Rucio catalogue if such a filename is already present.

 If so, it attaches it to the dataset

 - Finally, it creates a replication rule on the RSE (the RSE is an input parameter of the

 preupload function, however, it's important that the RSE must be the same chosen by the

 previous upload attempt). After this latest operation, the did will show up in Rucio.

"""

if not os.path.isdir(path):

 return

local_files = os.listdir(path)

nfiles = len(local_files)

scope, name = did.split(':')

try:

 clients.did_client.add_dataset(scope,name)

except:

 print("DID {0} already exists".format(did))

for local_file in local_files:

 try:

 clients.did_client.attach_dids(scope,name,[{'scope':scope,'name':local_file}])

 except:

 print("File {0} could not be attached".format(local_file))

try:

 clients.rule_client.add_replication_rule([{'scope':scope,'name':name}],1,rse)

except:

 print("The rule for DID {0} already exists".format(did))

This solution does not work for
the totality of use cases

Pre-staging of files for tape-based RSEs

In case we want to get some data stored in tapes (to download it, to create a new replication
rule, etc.), the operation takes a lot of time because data need first to be staged by the
tape-based RSE.
We developed in our aDMIX software a tool that move first data on the RSE disk buffer:

import gfal2
def bring_online(self,did,rse):

print("Bringing online {0} from {1}".format(did,rse))
 scope = did.split(':')[0]
 dataset = did.split(':')[1]

 file_replicas = Client().list_replicas([{'scope':scope,'name': dataset}],rse_expression=rse)
 files = [list(replica['pfns'].keys())[0] for replica in file_replicas]

 print("Bringing online {0} files".format(len(files)))

 ctx = gfal2.creat_context()
 try:
 pintime = 3600*48
 timeout = 3600
 (status, token) = ctx.bring_online(files, pintime, timeout, True)
 if token:
 print(("Got token %s" % token))
 else:
 print("No token was returned. Are all files online?")
 except gfal2.GError as e:
 print("Could not bring the files online:")
 print(("\t", e.message))
 print(("\t Code", e.code))

This feature uses the
bring_online function of the
gfal2 library
Wondering if something
similar could be included
in the Rucio tools:

rucio –prestage-did <DID> <RSE>

Dynamic handling of RSEs hostname:port

files = [list(replica['pfns'].keys())[0] for replica in file_replicas]

 if rse=="SURFSARA_USERDISK":
 for i, file in enumerate(files):
 files[i] = files[i].replace("gsiftp","srm")
 files[i] = files[i].replace("gridftp","srm")
 files[i] = files[i].replace("2811","8443")

By time in time, some GRID sites hosting our RSEs update their parameters, namely :

● the host name
● the port
● the protocol (migration to webdav, for instance)

In the bring_online function implemented in aDMIX,, for certain RSEs we have been obliged
to replace the pfns to switch from gsiftp protocol to srm (and the port number), otherwise
the gfal2 bring_online function would be unusable

If a ”rucio –prestage-did” is implemented in Rucio, we don’t have to do it anymore, since we
could benefit from the Rucio feature of handling multiple protocol://hostname:port for each RSE

Summary and outlook

The Rucio experience in XENONnT is great

Several requirements of the XENONnT pipeline brought us to few critical points for which
Rucio could help :

● Wondering if rucio.client.downloadclient.download_dids() could have implemented
an automatic retry system

● We need help to implement a reliable clean up procedure to retry a failed upload
(due to network issue, for instance)

● Proposing a new Rucio command (rucio prestage <DID>) allowing to bring online
data (from the tape to the buffer system associated). If implemented in Rucio, we
could profit of his capability to handle multiple protocol://hostname:port for each
RSE

