

# **MDI**, synchrotron radiation simulations

LHeC beam dynamics meeting

L. Forthomme (AGH) <laurent.forthomme@cern.ch>

7 Nov 2023

#### Introduction

Scope: study of the radiated power in all elements of the e/p beamlines

- Simulation tool: BDSIM, sampling at collimators, elliptical beamline (0.5 × 0.3 cm<sup>2</sup> apertures)
  - standard physics list, with addition of "synch\_rad" EM processes
  - developed a circ-elliptic aperture for BDSIM, no difference observed in resulting distributions
  - lattice assumption: critical energy optimum
- in this study, only considering electron beamline (single 50 GeV e<sup>-</sup> beam)
  - proton side QX/QY treated as upstream/downstream sector-bends



| Nane       | Туре         | L (m)    | Angle (mrad) | S Start(m) | SEnd (m)        |
|------------|--------------|----------|--------------|------------|-----------------|
| uDRIFT50   | Drift        | 0.5      | 0.0          | 0.0        | 0.5             |
| uDRIFT_Q0  | Drift        | 1.87198  | 0.0          | 0.5        | 2.37198         |
| uDRIFT30_0 | Drift        | 0.3      | 0.0          | 2.37198    | 2.67198         |
| uBEND_QY   | SBend        | 2.17713  | 2.072436     | 2.67198    | 4.8491          |
| uDRIFT20   | Drift        | 0.2      | 0.0          | 4.8491     | 5.0491          |
| uBEND_QX   | SBend        | 2.17713  | 2.072436     | 5.0491     | 7.22623         |
| uDRIFT30_1 | Drift        | 0.3      | 0.0          | 7.22623    | 7.52623/7.50623 |
| COL_BEND_0 | R-Collimator | 0.02     | 0.0          | 7.50623    | 7.52623         |
| BEND_0     | SBend        | 15.70306 | 14.947956    | 7.52623    | 23.22929        |
| dDRIFT30_0 | Drift        | 0.3      | 0.0          | 23.22929   | 23.52929        |
| dBEND_QX   | SBend        | 2.17713  | 2.072436     | 23.52929   | 25.70642        |
| dDRIFT20   | Drift        | 0.2      | 0.0          | 25.70642   | 25.98642        |
| dBEND_QY   | SBend        | 2.17713  | 2.072436     | 25.98642   | 28.08354        |
| dDRIFT30_1 | Drift        | 0.3      | 0.0          | 28.08354   | 28.38354        |
| dDRIFT_Q0  | Drift        | 1.87198  | 0.0          | 28.38354   | 30.25552        |
| dDRIFT50   | Drift        | 0.495    | 0.0          | 30.25552   | 30.75052        |
| COL_END_0  | R-Collimator | 0.005    | 0.0          | 30.75052   | 30.75552        |
|            |              |          |              |            |                 |

 $L^* = 15$  m beamline description









Flux of photons scored right before Q1A, and without collimator; the x = 0 axis refers to the electron beamline coordinate system (i.e. red curve on rhs. figure)

Even without upstream collimator, "scraping" of the high-dispersed outliers already at the Q0 level

### Introducing some shielding – at Q1A



Simulation of upstream shielding layer addition, tested a few thicknesses and materials

Left to right: without collimator, with a 4 cm upstream collimator after QX, with a 10 cm collimator at the same location.

AGH





Left to right: without collimator, with a 4 cm upstream collimator after QX, with a 10 cm collimator at the same location.

## **Critical energy**



From geometrical arguments, in a bending dipole

$$E_c = \frac{3c\gamma^3\hbar}{2R} = \frac{3c\gamma^3\hbar B}{2p}$$

Here, computed as the median of the  $dN_{\gamma}/dE_{\gamma}$  flux distribution:



Photon energy distribution at the exit of two beamline elements: detector "BEND\_0" area (left), and right upstream the proton Q1A (right)





- no difference in critical energy along beamline elements with different assumptions on a shielding introduced upstream the interaction region
- ~flat 15% reduction of critical energy downstream the shielding





Source: LHC Design Report, matching section in IR2 - 10.5170/CERN-2004-003-V-1

Larger free drift (half-)length  $L^* \rightarrow$  increased space for experimental apparatuses + TAS/TCL/Qx

Requires a re-optimisation of the full beamline optics & Twiss parameters (K. André):

- **proton side**: no need for extra half-quadrupole
  - addition of two off-centered quadrupoles: Q0F and Q0D
  - increased space for dipole, same "crossing" angle at interaction point
- electron side: extra drift between detector dipole & Q1A, amended bending angle to maintain separation parameters



Re-optimisation (K. André) of the beam & lattice parameters given the released geometrical constraints
P<sub>syn</sub>/ɛ<sub>c</sub>-based minimisation, further optimised for horizontal beam size

| Parameter      | <i>L</i> * = 15 m | <i>L</i> * = 23 m | Parameter            | <i>L</i> * = 15 m | <i>L</i> * = 23 m |
|----------------|-------------------|-------------------|----------------------|-------------------|-------------------|
| initial drift  | 2.672 m           | 6.739 m           | $\alpha_{x}$         | -0.0356           | -0.0789           |
| Q0F gradient   | 30.1337 T/m       | 29.0116 T/m       | $\alpha_y$           | 99.9485           | 6.2794            |
| Q0F length     | 2.1771 m          | 1.8548 m          | $\beta_{\mathbf{x}}$ | 0.0905            | 0.4349            |
| Q0F angle      | 2.0724 mrad       | 0.8347 mrad       | $\beta_{y}$          | 4881.1939         | 1699.5161         |
| Q0D gradient   | -18.3684 T/m      | -21.8747 T/m      | $D_{x}$              | 0.1337            | 0.0517            |
| Q0D length     | 2.1771 m          | 1.8548 m          | $D'_{x}$             | 0.0122            | 0.0030            |
| Q0D angle      | 2.0724 mrad       | 0.8347 mrad       | $D_{\nu}, D_{\nu}'$  | 0                 | =                 |
| half IR length | 7.8515 m          | 11.9512 m         | $\varepsilon_{x,v}$  | $5	imes 10^{-10}$ | =                 |
| half IR angle  | 5.378 mrad        | =                 | $\sigma_E$           | 0.28 MeV          | =                 |
|                |                   |                   |                      |                   |                   |

Lattice (left) and beam (right) operational parameters for the two free drift lengths scenarii

## L\* and photon hits distributions outside IR/at Q1A



Number of photon hits scored as a function of the free-drift length, at the exit of the detector dipole, and at the Q1A entrance, for L\* = 15 m (odd) and 23 m (even).

() AGH





 Factor 2 reduction observed in critical energy for all major beamline elements

Moreover, integrated along the full arc:

$$E_c \sim egin{cases} 272 ext{ keV for } L^* = 15 ext{ m} \ 139 ext{ keV for } L^* = 23 ext{ m} \end{cases}$$



Towards a better understanding of the variables of interest...

Thanks a lot to Kevin for the derivation of beamline + optics parameters ; considering to re-run the minimisation algorithm under other geometrical assumptions on QX/QY?

Still have to re-run large samples production with circ-elliptic beam pipe

**Spares** 

