
Timeslices in JANA2
Nathan Brei

Jefferson Lab
22 April 2024

Source Map Tap

How JANA2 works internally – Formalism

Sequential arrow:
Read input file or

stream

Parallel arrow:
Compute an

intermediate result
Sequential arrow:
Write output file

• Dataflow-parallel processing topology consisting of arrows, queues, and pools
• Arrows represent fixed tasks which may be sequential or parallel
• Arrows may have multiple queues and pools for their inputs and outputs
• Queues allow asynchronous processing so that no thread is directly waiting for a computation to finish

Source Map Tap

How JANA2 works internally – Formalism

Pool of
events

Queue of
events

Queue of
events

Pool of
events

• Dataflow-parallel processing topology consisting of arrows, queues, and pools
• Arrows represent fixed tasks which may be sequential or parallel
• Arrows may have multiple queues and pools for their inputs and outputs
• Queues allow asynchronous processing so that no thread is directly waiting for a computation to finish

Map Tap

How JANA2 works internally – Cartoon

Source Map Tap

How JANA2 Components map to Arrows

JEventSource::GetEvent()

JEventProcessor::
ProcessParallel()

…which calls
JFactory::Process()

… which calls
JFactory::Process()

…etc

JEventProcessor::
Process()

• The user doesn’t interact with topologies or arrows directly
• Instead, the user provides JANA with components such as JEventSources, JEventProcessors, JFactories
• Components are decoupled from each other. “Only communicate through the data model”
• JANA2 assigns the components’ callbacks to arrows in the processing topology

But also:
JEventSource::ProcessParallel()

Event levels
• JANA2 has a JEvent abstraction which previously meant both

1. A container of intermediate data that is used as JANA’s unit of parallelism
2. A physics event

• Now, JEvent strictly means (1).

• Each JEvent is tagged (not typed!) as belonging to some JEventLevel.
• For now, JEventLevel is an enum, although user-definable event levels may be

supported in the future.
• JANA2 doesn’t assume that all event levels are hierarchical, e.g. that one physics

event fits inside exactly one block, or even fully ordered. Instead, users establish
that relationship explicitly.

enum class JEventLevel {
 Run,
 Subrun,
 Timeslice,
 Block,
 SlowControls,
 PhysicsEvent,
 Subevent,
 Task,
 None
};

Generalizing to two event levels

Ph
ys

ic
sE

ve
nt

le

ve
l

Ti
m

es
lic

e
le

ve
l Source Map

Unfold
Map Tap

Pool of PhysicsEvents

Pool of Timeslices
Reads a file containing

Timeslices

Calculates intermediate
results for the Timeslices

Calculates intermediate
results for the
PhysicsEvents

Generalizing to two event levels

Ph
ys

ic
sE

ve
nt

le

ve
l

Ti
m

es
lic

e
le

ve
l Source Map

Unfold
Map Tap

Splits Timeslices into PhysicsEvents.
Keeps the Timeslice around and lets

the PhysicsEvent reference it.

This uses a new type of component!

Writes PhysicsEvents
(and possibly

Timeslices) to file

PhysicsEvent pool knows how to
recycle Timeslices once their
reference count reaches zero

Introducing JEventUnfolder component

Result Unfold(
 const JEvent& parent,
 JEvent& child,
 int child_index) override;

enum class Result {
 NextChildNextParent,
 NextChildKeepParent,
 KeepChildNextParent
};

• JEventUnfolder looks and feels very similar to a JOmniFactory
• Users may declare Parameters, Services, Resources, Inputs, Outputs, or

access everything through JApplication/JEvent
• No Generator needed as there will only be one instance active for any

given level, same as JEventProcessors

• Provides an Unfold callback
• Name comes from functional programming and stream processing
• Unfold handles both “splitting” and “merging” streams
• Returns a Result code indicating whether the parent and child

belong together
• We never need to have all PhysicsEvents corresponding to one

Timeslice in memory at once

• Inputs come from the parent event (e.g. Timeslice)
• Outputs are inserted into the child event (e.g. PhysicsEvent)
• The child event keeps a pointer to the parent event around, so that any

factory can access Timeslice-level data

What does this mean for our Factories?
• OmniFactories look almost exactly the same as before
• OmniFactories each belong to a particular event level. All of their outputs belong to that level.
• OmniFactory::Input helper now takes event level as an optional parameter
• Event level information can be applied entirely at the JOmniFactoryGenerator level
• The same algorithm and factory can be wired and reconfigured for different event levels

struct MyProtoclusterFactory
 : public JOmniFactory<MyProtoclusterFactory> {

PodioInput<ExampleHit> hits_in {this};
PodioOutput<ExampleCluster> clusters_out {this};

void Configure() {
}

void ChangeRun(int32_t run_nr) {
}

void Execute(int32_t run_nr, uint64_t evt_nr) {
 ...
}

// Factory that produces timeslice-level protoclusters
// from timeslice-level hits
app->Add(new JOmniFactoryGeneratorT<MyProtoclusterFactory>(
 { .tag = "timeslice_protoclusterizer",
 .level = JEventLevel::Timeslice,
 .input_names = {"hits"},
 .output_names = {"ts_protoclusters"}
 }));

// Factory that produces event-level protoclusters
// from event-level hits
app->Add(new JOmniFactoryGeneratorT<MyProtoclusterFactory>(
 { .tag = "event_protoclusterizer",
 .input_names = {"hits"},
 .output_names = {"evt_protoclusters"}
 }));

What does this mean for JEventSources?

* Sources are
#include <JANA/JEventSourceGenerator.h>
#include "MyFileReader.h"

class MyFileReaderGenerator : public JEventSourceGenerator {

 double CheckOpenable(std::string resource_name) override {
 if (resource_name.find(".root") != std::string::npos) {
 return 0.01;
 }
 return 0;
 }

 JEventSource* MakeJEventSource(std::string resource_name) override {

 auto source = new MyFileReader;

 if (resource_name.find("timeslices") != std::string::npos) {
 source->SetLevel(JEventLevel::Timeslice);
 }
 else {
 source->SetLevel(JEventLevel::PhysicsEvent);
 }
 return source;
 }
};

• JANA2 can figure out that the input
file contains timeslices from inside
the JEventSourceGenerator

• This means that this critical
information is already known
before the time of topology
construction

• The topology builder is able to
decide what topology to build
based off what components were
provided.

• The same PODIO event source class
can be reused for files containing
timeslices vs physics events with
minimal modification

Generalizing further

Source Map

Unfold Fold

Map Tap

Source Map

Unfold Fold

Map Tap

Source Map

Unfold Fold

Map Tap

• Source calls
• JEventSource::GetEvent()

• Map calls
• JOmniFactory::Process()
• JEventProcessor::ProcessParallel()
• JEventSource:: ProcessParallel()
• JEventUnfolder:: ProcessParallel()
• JEventFolder:: ProcessParallel()

• Tap calls
• JEventProcessor::Process()

• Unfold calls
• JEventUnfolder::Unfold()

• Fold calls
• JEventFolder::Fold()

Ph
ys

 E
ve

nt

le
ve

l
Ti

m
es

lic
e

le
ve

l
Su

be
ve

nt
le

ve
l

• The arrows in the further generalized topology (abstractly) form a grid:
{Source, Map1, Unfold, Fold, Map2, Tap} x {Timeslice, PhysicsEvent, Subevent,…}

• Depending on which components the user provides, JANA2 can activate and wire the arrows automatically
• This wiring could also be specified manually

Basic topology

Source Map

Unfold Fold

Map Tap

Source Map

Unfold Fold

Map Tap

Source Map

Unfold Fold

Map Tap

User provides:
• JEventSource [Timeslice]
• JEventProcessor [Timeslice]
• JFactory [Timeslice]

Timeslice
Event
Subevent

Ph
ys

 E
ve

nt

le
ve

l
Ti

m
es

lic
e

le
ve

l
Su

be
ve

nt
le

ve
l

Parallel Sequential

Ph
ys

ic
sE

ve
nt

le

ve
l

Ti
m

es
lic

e
le

ve
l

Su
be

ve
nt

le
ve

l

Timeslice splitting topology

Source Map

Unfold Fold

Map Tap

Source Map

Unfold Fold

Map Tap

Source Map

Unfold Fold

Map Tap

User provides:
• JEventSource [T]
• JFactory [T]
• JEventUnfolder [T -> P]
• JEventProcessor [P]
• JFactory [P]

Timeslice
Event
Subevent

Parallel Sequential
Only one wiring usually makes sense
for each combination of components

the user may add!

Ph
ys

ic
sE

ve
nt

le
ve

l
Ti

m
es

lic
e

le
ve

l
Su

be
ve

nt
le

ve
l

Timeslices + subevents topology

Source Map

Unfold Fold

Map Tap

Source Map

Unfold Fold

Map Tap

Source Map

Unfold Fold

Map Tap

User provides:

• JEventSource [T]
• JEventProcessor [P]

• JEventUnfolder [T -> P]
• JEventUnfolder [P -> S]
• JEventFolder[S -> P]

• JFactory [T]
• JFactory [P]
• JFactory [S]

Timeslice
Event
Subevent

Parallel Sequential

Ph
ys

ic
sE

ve
nt

le

ve
l

Ti
m

es
lic

e
le

ve
l

Su
be

ve
nt

le
ve

l
What happen if the user provides “extra”
components?

Source Map

Unfold Fold

Map Tap

Source Map

Unfold Fold

Map Tap

Source Map

Unfold Fold

Map Tap

User provides:

• JEventSource [P]
• JEventProcessor [P]
• JEventUnfolder [T -> P]
IGNORED!
• JFactory [T]
IGNORED!
• JFactory [P]

Timeslice
Event
Subevent

Parallel Sequential

What does this mean for EICrecon?

• We can define our factories and algorithms once
• We can add generators that wire them differently for the timeslice input

files and for physics input files
• These wirings can live side-by-side without interfering with each other
• We can define our PODIO event source and processor once
• We can add a generator that configures the source’s event level
• The topology builder choose which topology to build based off of which

components (most notably, sources) are present
• No additional configuration necessary! Eases the transition from events

to timeslices

Memory management – Concept
As of right now:
• Parents have shared-ptr-like semantics (except they are recycled to a pool)
• Parents always outlive their children
• Events can have multiple parents
• Parents are uniquely identified by their event level: “Diamond inheritance” not permitted
• To get data from a parent, you have to ask for the parent explicitly (no searching or

“importing into the global namespace”)

Future improvements:
• Event sources will eventually be able to emit events that already have parents
• Data in adjacent timeslices will be accessible via a ‘sibling’ reference, analogous to parents

except weak-ptr-like

Memory management – Parent relation

Timeslice #47 (47)

Run #3

Timeslice #46 (46) Timeslice #48 (48)

Event #556 (1)Event #555 (0) Event #557 (0)Event #554 (6)

Ev
en

t l
ev

el

Time PhysicsEvent 555 can
reference Timeslice 47 and

Run 3

Timeslice 47 will stay in
memory until PhysicsEvent
555 and 556 are recycled

Memory management – Multiple parents

Timeslice #47 (47)

Run #3

Timeslice #46 (46) Timeslice #48 (48)

Event #556 (1)Event #555 (0) Event #557 (0)Event #554 (6)

Ev
en

t l
ev

el

Time

Slow Controls #22 Slow Controls #21

Events need to fit within both Timeslices and
SlowControls, but SlowControls and Timeslices

can overlap!

Not all parent relations will
necessarily come from the

Unfolder!

Memory management – Sibling relations
(Coming soon!)

Timeslice #47 (47)

Run #3

Timeslice #46 (46) Timeslice #48 (48)

Event #556 (1)Event #555 (0) Event #557 (0)Event #554 (6)

Ev
en

t l
ev

el

Time
PhysicsEvent 555 can

reference Timeslice 47 and
46 and 48

Timeslice 47 has to stay
around until both 46 and

48 are ready to be recycled

This is no longer mere
reference counting!

Event key
• Generalizes the concept of event and run number to streaming scenarios
• Will eventually replace the awkward arguments to JOmniFactory::Execute

• Event number: For each level inside our unfold/fold hierarchy, we have:
• Absolute number: Starts at 0, increments by 1
• Relative number: Starts at 0 for each parent, increments by 1
• User key: Could be anything, bunch crossing number in practice

• Run number: Separate numbers for each parent level outside of the unfold/fold
hierarchy
• Goal: Take advantage of the symmetry between “side-loading data from a database” and “retrieving

data from events that live at a different level but were intermingled in the event stream”, e.g. BOR,
slow controls

• Might all end up being intervals of bunch crossing numbers in practice
• Challenge: Getting JEventSource to emit events that already have parents

Summary

• JEvents and components can all be tagged with an event level := {…,
Timeslice, PhysicsEvent, Subevent, …}
• We introduce a `JEventUnfolder` which lets us split a timeslice into events,

and also merge two independent streams
• Components at any level (e.g. PhysicsEvent) are able to safely and easily

reference the data at higher levels (e.g. Timeslice)
• We extend the OmniFactory interface patterns to JEventUnfolder
• JANA2 is now able to automatically build a complex topology from different

components at different event levels.
• EICrecon will be able to tell just from the input file what topology needs to

be built and how to build it => Smoother transition

Next steps

• A working prototype is already in master
• src/examples/TimesliceExample
• https://github.com/JeffersonLab/JANA2/

• Create timeslice data file
• Implement logic for splitting timeslice into physics events
• Ironing out small details
• Recycling parents via an EventFolder vs directly to event pool
• Improving the JEventKey to better generalize event and run numbers

https://github.com/JeffersonLab/JANA2/tree/nbrei_omni

