## TDR Progress Calorimeter Reconstruction

2024 ePIC S&C CERN Workshop

Derek Anderson (ISU)

April 23<sup>rd</sup>, 2024

## Summary | TDR Readiness (1/3)



- Calorimeter reconstruction started
   2024 in strong state
  - Workflow completed in 2023
  - Since been in use by users
- However, several requests were made at January CM
  - Right: summary of identified calorimeter software needs / wants from CM discussion

#### ∴ 2 questions to answer:

- 1) Which ones are must-haves?
- 2) Are the must-haves fulfilled?

#### **Identified Data Model Needs**

 Improved truth-cluster connections

#### Identified Reconstruction Needs/Wants

- Clustering implemented in all systems
- Cluster splitting/merging
- ML Integration
- Digitization noise, noise-masking and system-specific digitization model implementations
- Better neutral identification
- Easier access to janadot output

#### Identified Simulation Needs/Wants

- Enhanced realism in BEMC implementation and implementation of end-of-sector box material
- Dedicated studies of HGCROC vs. waveform digitizer in BEMC
- Physics-driven performance studies for nHCal
- Update ZDC default to SiPM-on-tile
- Enhanced realism in pECal implementation

## Summary | TDR Readiness (2/3)

- Amount of requests and scope of some go well beyond available workforce and what can be accomplished in a few months
  - "Must Have:" has to happen in ElCrecon or have something changed in ElCrecon to happen
  - Some things can be addressed by standalone analyses or accounted-for post-hoc

#### **Must Haves:**

- Improved truth-cluster connections
- Clustering in all systems
- Cluster splitting/merging
- ML integration
- Noise-masking, channel-by-channel gain/noise setting
- Easier access to janadot output

#### (More details in following slides)



#### **Identified Data Model Needs**

- Improved truth-Cluster connections

#### Identified Reconstruction Needs/Wants

- Clustering implemented in all systems
- Cluster splitting/merging
- ML Integration
- Digitization noise, noise-masking and system-specific digitization model implementations
- Better neutral identification
- Easier access to janadot output



### Summary | TDR Readiness (3/3)

| Category       | Request                                              | Status      |
|----------------|------------------------------------------------------|-------------|
| Must Haves     | Improved truth-cluster connections                   | In progress |
|                | Clustering in all systems                            | Complete    |
|                | Cluster splitting/merging                            | In progress |
|                | ML integration                                       | Complete    |
|                | Noise-masking, channel-by-channel gain/noise setting | Complete    |
|                | Easier access to Janadot output                      | To do       |
| Not Must Haves | Better neutral identification                        | To do       |
|                | System-specific digitization models                  | To do       |



## Summary | ElCrecon Issues

| Request                                              | Corresponding issues                       |
|------------------------------------------------------|--------------------------------------------|
| Improved truth-cluster connections                   | ElCrecon#898, ElCrecon#899                 |
| Clustering in all systems                            | ElCrecon#1342                              |
| Cluster splitting/merging                            | ElCrecon#897, ElCrecon#1289                |
| ML integration                                       | ElCrecon#1340                              |
| Noise-masking, channel-by-channel gain/noise setting | ElCrecon#1337                              |
| Easier access to janadot output                      | ElCrecon#1339                              |
| Better neutral identification                        | ElCrecon#1341                              |
| System-specific digitization models                  | ElCrecon#1338, ElCrecon#1081, ElCrecon#696 |

## **Details** | To-Do Issues (1/2)



#### **Better Neutral Identification**

#### Issues: ElCrecon#1341 PRs: n/a

#### Notes

- Desire was expressed during January discussion for better reconstruction of neutral particles
- This is something that can be handled in standalone analyses for time being
- Addressing this in a satisfactory manner will require particle flow

#### Easier Access to Janadot

Issues: <u>ElCrecon#1339</u> PRs: n/a

#### Notes

- Users expressed desire for an easier way of visualizing what algorithms are being run
- Concern with Janadot was that it's hard-tofind and too developer oriented
- Could we put in something to quickly export mermaid diagrams?

## Details | To-Do (2/2) & Complete Issues (1/2)



#### System Specific Digitization Models

#### Issues: ElCrecon#1338, ElCrecon#1081, ElCrecon#696 PRs: n/a

#### Notes

- Users expressed desire for digitization models (esp. wrt. to noise) more tuned to the actual hardware that'll be used
- However, this is a massive undertaking that's going to take coordination across several groups
- This is something that will need to wait until after the TDR...

#### Noise-Masking, etc.

Issues: ElCrecon#1337
PRs: ElCrecon#1349

#### Notes

- However, more tractable items did come up in follow-up conversations: ability to implement dead maps + more control over gain/noise
- <u>PR#1349</u> addresses this nicely: gains for each channel can be adjusted w/ adjacency matrix-style expression

#### Follow-Up

Confirm with DSCs that this is sufficient
 If not, identify anything w/ quick turnaround

# epic

## Details | To-Do (2/2) & Complete Issues (1/2)

#### Examples

-PEEMC:EcalEndcapNRecHits:samplingFraction='[row, column](){ static map<std::tuple<double, double>, double> sf; auto index = std::make\_tuple(row, column); if (!sf.count(index)) { std::default\_random\_engine gen(row + 100 \* column); std::normal\_distribution R{1.0, 0.1}; sf[index] = R(gen); } return sf[index]; }()'

.sampFrac = "(eta == phi) ? 0.0 : 0.033" // unalive all channels on a diagonal, otherwise use default

#### Noise-Masking, etc.

Issues: ElCrecon#1337
PRs: ElCrecon#1349

#### Notes

- However, more tractable items did come up in follow-up conversations: ability to implement dead maps + more control over gain/noise
- <u>PR#1349</u> addresses this nicely: gains for each channel can be adjusted w/ adjacency matrix-style expression

#### Follow-Up

Confirm with DSCs that this is sufficient
 If not, identify anything w/ quick turnaround

## **Details** | Complete Issues (2/2)



#### Clustering in all Systems

#### Issues: ElCrecon#1342 PRs: n/a

#### Notes

- In January, nHCal DSC specifically was unsure if clustering parameters were ideal
- DSC liaison confirmed at recent Calo CCWG meeting that parameters are indeed okay

#### **Follow-Up**

Double-check with other DSCs to make sure no other subsystem slipped through crack

#### **ML Integration**

Issues: ElCrecon#1340 PRs: ElCrecon#1358

#### Notes

- In January, users expressed desire for an example of how to use Ort (or likewise) in an algorithm
- <u>PR#1358</u> accomplishes this nicely
- And TMVA::SOFIE is now available in the shell (containers#9)

#### Follow-Up

Small issues with stability in enabling ONNX (c.f. <u>ElCrecon#1394</u>)

## **Details** | In-Progress Issues: Associations (1/4)



#### Improved Truth-Cluster Associations

Issues: ElCrecon#898, ElCrecon#899 PRs: ElCrecon#1382 [+1 more to come]

#### Context

- The biggest concern expressed by users (esp. from the HCal.s)
  - Are the truth-cluster associations working?
  - Or more precisely: is there enough information in the output for users to do what they need?
- The ability to understand how energy is flowing in the detector will be critical for more advanced studies



## **Details** | In-Progress Issues: Associations (2/4)



#### Improved Truth-Cluster Associations

Issues: ElCrecon#898, ElCrecon#899 PRs: ElCrecon#1382 [+1 more to come]

#### So what's in the ElCrecon output?

- Confirmed (as of this past weekend) that all collections to the right are saved to ElCrecon output
  - So users can go from clusters to G4Hits
     to MCParticles using ElCrecon output
- : All of the information is there...
  - But can we make life easier for users w/ a judicious choice of association b/n Clusters & MCParticles?



## **Details** | In-Progress Issues: Associations (3/4)



#### Improved Truth-Cluster Associations

Issues: ElCrecon#898, ElCrecon#899 PRs: ElCrecon#1382 [+1 more to come]

#### **Current Truth-Cluster Assocation Logic:**

- 1) Identify highest energy hit in cluster
- Grab 1<sup>st</sup> contributing particle of corresponding simulated hit
- 3) Assign that contributor as the associated particle of the cluster

#### **Proposed Minimal Change:**

- Set highest energy contributor as the associated MCParticle
- Will open PR today based on discussion



## **Details** | In-Progress Issues: Associations (4/4)



#### Improved Truth-Cluster Associations

Issues: ElCrecon#898, ElCrecon#899 PRs: ElCrecon#1382 [+1 more to come]

#### **Possible More Elaborate Change:**

- Working on in <u>PR#1382</u>
- Idea: identify initiator of a shower which contributes to cluster, and associate the two
- How?
  - 1) Check if contributor start vertex is *outside* volume of subsystem
  - If so, create association with weight given by eContrib / eCluster (or similar)



April 23rd, 2024

## **Details** | In-Progress Issues: Cluster Merging (1/4)



#### **Cluster Merging**

**Issues:** ElCrecon#897, ElCrecon#1289 PRs: [will open draft this week]

#### Context

- <u>ElCrecon#1289</u> under investigation by Akshaya
- We have cluster splitting capabilities in place...
- But we don't have any *merging* tools in place

#### Proposal

- Implement a track-based merging routine based on ATLAS's split recovery procedure
  - > c.f. <u>Eur. Phys. J. C (2017) 77:466</u>
  - Figure illustrating routine from paper below



## epi

## **Details** | In-Progress Issues: Cluster Merging (2/4)

#### **Cluster Merging**

Issues: ElCrecon#897, ElCrecon#1289 PRs: [will open draft this week]

#### Track-Based Merging Algorithm

- 1) Match track projection to cluster
- 2) If matched,
  - Calculate significance b/n cluster energy
     & expected E<sub>dep</sub>:

 $S(E_{clust}) = \frac{E_{clust} - (p_{proj} \times \langle E/p \rangle)}{\sigma(E_{dep})}$ 

3) If  $S < S_{cut}$ , add clusters inside  $\Delta r_{add}$ 

Note: could also make iterative...



#### Parameters: from single particle sim.s

Average E/p,  $\langle E/p \rangle$ Spread of dep. energy,  $\sigma(E_{dep})$ Threshold to run split-recovery,  $S_{cut}$ Window to add clusters,  $\Delta r_{add}$ 

## epié

## **Details** In-Progress Issues: Cluster Merging (3/4)

#### **Cluster Merging**

Issues: ElCrecon#897, ElCrecon#1289 PRs: [will open draft this week]

#### Caveats

 Only works if track projections are available for a given calorimeter...

#### Notes

- Prepared a processor to generate histograms of splitting metrics (e.g. eClust / eSum)
  - > Currently available in <u>eic/snippets</u>
  - Also calculates necessary parameters for algorithm
  - > (Will convert into a benchmark...)



#### **Parameters:** from single particle sim.s

Average E/p,  $\langle E/p \rangle$ Spread of dep. energy,  $\sigma(E_{dep})$ Threshold to run split-recovery,  $S_{cut}$ Window to add clusters,  $\Delta r_{add}$ 

## epi

## **Details** | In-Progress Issues: Cluster Merging (4/4)

#### **Cluster Merging**

**Issues:** ElCrecon#897, ElCrecon#1289 PRs: [will open draft this week]

#### **Other Directions and Fallbacks**

- Proposed algorithm will function as baseline
  - But with ONNX support in place and examples available...
  - > Potential for quick turnaround on ML reclustering routines?
- Worst case scenario:
  - > Is everything there for users to do standalone analyses?



#### **Parameters:** from single particle sim.s

Average E/p,  $\langle E/p \rangle$ Spread of dep. energy,  $\sigma(E_{dep})$ Threshold to run split-recovery,  $S_{cut}$ Window to add clusters,  $\Delta r_{add}$ 

### Conclusions | Timelines



**Timeline:** truth-cluster associations (minimal change)

- 1) PR opened today
- 2) Merged next couple days

**Timeline:** truth-cluster associations (more elaborate change)

- 1) By end of week:
  - > Integrate feedback,
  - > complete to-do's,
  - > Switch PR to open
- 2) Merged next week ahead of May campaign

#### Timeline: cluster merging

- 1) Draft PR for track-based merger/splitter opened by end of week
- 2) PR switched to open by May 3<sup>rd</sup>
  - Goal: merged for testing after May campaign
- Collecting feedback, tuning, debugging proceeds May 6<sup>th</sup> – May 24<sup>th</sup>
- Any additional changes in by May 31<sup>st</sup> and merged ahead of June campaign
- This is something we could use help with!!

### **Conclusions** | Questions for Discussion



- Naïve question: is there anything left out of the event record in MCParticles?
  - > e.g. shower particles?
- Is the full (incl. CaloHitContributions)
   simulation output available for campaigns?
   > If so, how should we advertise it?
- Thoughts on the more elaborate association proposal?
- Thoughts on the proposed merging algorithm?
- Anything else?