
Examples for Data Model Usage
Wouter Deconinck

● The set of standardized data structures that we collectively agree to use
to pass information between reconstruction algorithms

● Example: The information we talk about when we say “a hit in a tracking
detector,” such as channel number, energy deposition, time, position, etc…

What is not included in this discussion of the data model?

● Decisions about input/output file/memory formats, physical data storage
medium: we aim for flexibility through our choice of data model.

● Example: Our choice of data model does not require storage in ROOT files
(but can be written to ROOT files, HDF5 files, protobuf, and many others),
does not require C++ (or Python), does not require row-oriented memory
layouts (may allow for GPU processing), etc…

What is a Data Model?

2

The Motivation Behind a Standardized Data Model
Use of standard interfaces between individual simulation, reconstruction, and
analysis tasks creates modularity that allows easy exchange of components.

Example: Multiple clustering algorithms can be swapped out, as long as they
adhere to the data model interfaces.

This modularity extends beyond the EIC, since many data structures are common
across collider experiments worldwide.

3

Podio: Plain-Old-Data I/O
Example: human-readable data model definition

 edm4hep::SimTrackerHit:

 Description: "Simulated tracker hit"

 Author : "F.Gaede, DESY"

 Members:

 - uint64_t cellID // ID of the sensor that created this hit

 - float EDep // energy deposited in the hit [GeV].

 - float time // proper time of the hit in the lab frame in [ns].

 - float pathLength // path length of the particle in the sensitive material.

 - int32_t quality // quality bit flag.

 - edm4hep::Vector3d position // the hit position in [mm].

 - edm4hep::Vector3f momentum // the 3-momentum of the particle at the hits position in [GeV]

 OneToOneRelations:

 - edm4hep::MCParticle MCParticle // MCParticle that caused the hit.

 #etc
4

EDM4hep: Event Data Model for HEP

Ref: https://cern.ch/edm4hep
5

EDM4eic: Adding EIC Physics to EDM4hep
By request of the EIC community, podio supports extensions of data models.

We have been using this to define data types on top of EDM4hep.

 edm4eic::InclusiveKinematics:

 Description: "Kinematic variables for DIS events"

 Author: "S. Joosten, W. Deconinck"

 Members:

 - float x // Bjorken x (Q2/2P.q)

 - float Q2 // Four-momentum transfer squared [GeV^2]

 - float W // Invariant mass of final state [GeV]

 - float y // Inelasticity (P.q/P.k)

 - float nu // Energy transfer P.q/M [GeV]

 OneToOneRelations:

 - edm4hep::ReconstructedParticle e // Associated scattered electron (if identified)

6

Design Criteria of our Data Model
● The smallest number of unique data structures to represent our data.
● Internal consistency, predictability: units, naming scheme, components vs

data types, relations vs vectors, truth associations.
● Minimal redundancy, minimal repetition.
● Clear and unambiguous definitions.

Managing Data Objects in Collections
● Objects should be created as part of collections:

○ Only objects in collections have getObjectID() (which refers to collectionID and
index).

○ Ownership of objects in collections is clear.
● Objects in collections should be considered immutable.

○ Collections represent input data, which can be on an immutable medium.
○ Collections with output data can be added to, but once sent off they are immutable.

● References to objects in other collections are by collectionID and index.
○ collectionID is 32-bit hash of name, e.g. 2714477136 for MCParticles.
○ index is a signed int (-1 for untracked objects, outside collections).

● References are either called Relations (one-to-one, one-to-many) or
Associations when data type contains two one-to-one relations and a weight.

Generic Tools to Access and Debug
$ podio-vis /usr/local/share/edm4hep/edm4hep.yaml

Saving file gv and gv.svg

Generic Tools to Access and Debug
$ podio-dump file.edm4hep.root

input file:

sim_dis_18x275_minQ2=1000_craterlake.ed

m4hep.root

datamodel model definitions stored in

this file: edm4hep

Frame categories in this file:

Name Entries

runs 1

metadata 1

events 100

$ edm4hep2json --events 1,2,10
--coll-list MCParticles
sim_dis_18x275_minQ2=1000_craterlak
e.edm4hep.root

$ jq '.[].MCParticles.collection'
sim_dis_18x275_minQ2=1000_craterlak
e.edm4hep.json

Supports primarily edm4hep data model, but
approach could be replicated in edm4eic.

Components have only data in them (struct),
not possible by itself inside a collection:
 components:

 Vector3f:

 Members:

 - float x

 - float y

 - float z

Data types can refer to components or other
data types, and are stored in collections:
 datatypes:

 TrackerHit:

 Members:

 - Vector3f position

Components and Data Types
C++

 #include <edm4hep/Vector3f.h>

 edm4hep::Vector3f v();

 std::cout << v.x << std::endl;

 #include <edm4hep/TrackerHit.h>

 edm4hep::TrackerHit h();

 v = h.getPosition();

 std::cout << v.x << std::endl;

Python

 import edm4hep

 v = edm4hep.Vector3f()

 print(v.x)

 h = edm4hep.TrackerHit

 v = h.getPosition()

 print(v.x)

Vector Members
Vector members are arrays of data or
components (not often in simulated data).

 edm4hep::EventHeader:

 VectorMembers:

 - double weights // edm4hep v1.0

 edm4eic::ProtoCluster:

 VectorMembers:

 - float weights

These are std::vector-like quantities
(variable length), and technically break
POD-ness. They are harder to feed to
fixed-length AI/ML training algorithms.

Python (with edm4hep v1.0)

import edm4hep

from podio import Frame

from podio.reading import get_reader

reader = get_reader("file.edm4hep.root")

frames = reader.get("events")

frame = frames[0]

h = frame.get("EventHeader")

w = h[0].getWeights()

print(w.size())

C++ (with edm4hep v1.0)

#include <edm4hep/EventHeaderCollection.h>

#include <podio/Frame.h>

#include <podio/ROOTFrameReader.h>

podio::ROOTFrameReader r;

r.openFile(argv[1]);

auto f =

podio::Frame(r.readNextEntry(podio::Category:

:Event));

auto& h =

f.get<edm4hep::EventHeaderCollection>("EventH

eader");

auto& w = h.at(0).getWeights();

std::cout << w.size();

One-to-One Relations
Relations are references to one objects in
another collection.

 edm4hep::SimTrackerHit:

 OneToOneRelations:

 - edm4hep::MCParticle MCParticle

 // (‘particle’ in edm4hep v1.0)

E.g. B0TrackerHits contains
edm4hep::SimTrackerHit, and the
one-to-one relations is in:
_B0TrackerHits_MCParticle.collectionID

_B0TrackerHits_MCParticle.index

Transparent access when using podio tools.

Python

import edm4hep

from podio import Frame

from podio.reading import get_reader

reader = get_reader("file.edm4hep.root")

frames = reader.get("events")

frame = frames[0]

h = frame.get("B0TrackerHits")

p = h[0].getMCParticle()

print(p.getPDG())

C++

#include <edm4hep/SimTrackerHitCollection.h>

#include <podio/Frame.h>

#include <podio/ROOTFrameReader.h>

podio::ROOTFrameReader r;

r.openFile(argv[1]);

auto f =

podio::Frame(r.readNextEntry(podio::Category:

:Event));

auto& h =

f.get<edm4hep::SimTrackerHitCollection>("B0Tr

ackerHits");

std::cout <<

h.at(0).getMCParticle().getPDG();

One-to-Many Relations
Relations are references to multiple objects
in other collections. This requires an
intermediate table.

 edm4hep::MCParticle:

 OneToManyRelations:

 - edm4hep::MCParticle daughters

All different daughters are referenced in
_MCParticles_daughters, as for one-to-one
relations.

MCParticles.daughters_begin and
MCParticles.daughters_end indicate
range of references that should be used.

C++

#include <edm4hep/MCParticleCollection.h>

#include <podio/Frame.h>

#include <podio/ROOTFrameReader.h>

podio::ROOTFrameReader r;

r.openFile(argv[1]);

auto f =

podio::Frame(r.readNextEntry(podio::Category:

:Event));

auto& p =

f.get<edm4hep::MCParticleCollection>("MCParti

cles");

auto& d = p.at(0).getDaughers();

std::cout << d.size();

Python

import edm4hep

from podio import Frame

from podio.reading import get_reader

reader = get_reader("file.edm4hep.root")

frames = reader.get("events")

frame = frames[0]

p = frame.get("MCParticles")

d = p[0].getDaughters()

print(d.size())

Direct Access through ROOT Storage Layer
Requires explicitly resolving the relations
collection IDs and index.

Python

import uproot as up

events =

up.open(“file.edm4hep.root”)["events"]

daughters_begin =

events["MCParticles.daughters_begin"].a

rray()

