
LHCb’s Allen Application and Framework
EIC Software Week 2024

April 25th, 2024

Roel Aaij and Dorothea vom Bruch

1 LHCb Detector

2

30 MHz (4 TB/s) of input contains a MHz of signal,
while we can only store 10 GB/s long-term

LHCb Upgrade Physics in a Single Slide

3 LHCb Upgrade Dataflow

HLT1 challenge: reduce ~4 TB/s to 100 GB/s
in real-time with high physics efficiency

4 TB/s

4

4 LHCb Upgrade Trigger and DAQ

5 LHCb HLT1

GP
U

HL
T1

 T
DR

● Inclusive trigger
● Reduce rate from 30 MHz to 1 MHz
● Need to reconstruct:

○ Velo tracks
○ Primary Vertices
○ “Long” tracks (Velo->UT->SciFi)
○ Muon ID

● Optional ingredients
○ ECal reconstruction
○ Electron ID
○ Photons
○ “T-Tracks” (SciFi)
○ “Downstream” tracks (UT-SciFi)
○ RICH PID

● Avoid global event cuts if possible

https://cds.cern.ch/record/2717938/

6 HLT1 on GPUs: Allen

4 TB/s

70-200
GB/s

Allen implements HLT1 as a GPU
application; currently 2 GPUs installed
in each event builder server

GP
U

HL
T1

 T
DR

https://cds.cern.ch/record/2717938/

Allen Kernels7

8

● 400 GPUs installed in Event Builder servers
● Input data copied to GPUs in EB format:

~1000 multi-fragment-packets in
multi-event-packets of 30000 events

● 20-25 GB/s per server
● Event data memory layout “transposed” with

respect to event-by-event
● Input data directly from shared memory
● Output in custom binary format to DAQ
● Experiment Control System steers HLT1
● Obtain geometry and conditions from LHCb

software on-the-fly

DAQ with GPUs

9

● gitlab: gitlab.cern.ch/lhcb/Allen
● C++17 (soon 20), CUDA (12.X), HIP (5.X)
● Built with CMake and runs on CPU and GPU (NVIDIA and AMD)
● Standalone builds and “stack” builds

● Single precision throughout
● Batches of ~1000 events (~100 kb/event)
● GPUs have their own memory; framework provides functions to copy data
● ~10 batches in parallel using CUDA/HIP streams (1 CPU thread per stream)
● No dynamic allocations
● Configurable (in Python) sequence of algorithms
● Asynchronous event loop
● All algorithms written from scratch for good performance on GPUs
● documentation: https://allen-doc.docs.cern.ch/

1-Slide Framework

https://gitlab.cern.ch/lhcb/Allen
https://allen-doc.docs.cern.ch/

● Must not interfere with event building
● Do everything on the GPU: raw data in, decisions and candidates out
● Maximise (GPU) algorithm performance
● Start with barebones framework and write kernels in CUDA
● Implement performant reconstruction algorithms,

i.e. significantly faster/$ than on CPU
● Batches of ~1000 events with control flow
● Event model will evolve so keep it simple

○ little to no dynamic memory allocation
○ SOA containing (small structs of) PODs
○ Count first, write later

● Minimise serialization of event data
● Opportunistic use of the CPU

○ Prefix sums
○ Monitoring
○ Low IPC algorithms that require little data

Philosophy10

● No portability frameworks, just write CUDA
● #ifdef and a tiny middleware (1400 LoC) to allow running on

CPU (x86, ppc64le, ARM) and AMD GPUs
● Port to Intel GPUs nearly ready
● Allow dispatching to architecture-specific functions for extra

performance
● No performance penalty due to portability

Portability

● Database of algorithms, inputs, outputs and properties built using
code parsing with libclang

● Allow configuration of the sequence of algorithms/kernels
● Allow properties of algorithms to be set
● Multiple instances of an algorithm with separate inputs and outputs
● Configuration in Python using LHCb’s PyConf package

Configuration

11

● Memory allocations on the GPU are very slow
● Allocate memory for event data up front
● Chunk of memory allocated per stream

~1 MB per event

● Each algorithm proceeds in two steps:
○ Request memory for outputs
○ Run kernel

● Strong preference for “Count First, Write Later”
● Sequence uses data dependencies to track lifetime
● Device Memory is released as soon as possible
● Failure to reserve memory aborts the batch ->

Split in two and try again
● Host memory done analogously, but not released until after data is

output from the application

Memory Management12

● 150 kHz of events per server
● 20-25 GB/s per server
● Low overhead
● Batches of ~1000 events

● Based on ZeroMQ
● Initial use case was a benchmark for performance measurement
● Asynchronous event processing added later
● Support four data flow models:

○ Benchmark with single batch of events
○ Process all input in a set of files (simulation, development)
○ Externally controlled, i.e. wait for data and process whatever

arrives and stop/exit when told
○ Benchmark with multiple (preloaded) batches

● All of this is currently mixed together in the same code
● It works, but is not very pretty and needs refactoring

Event Loop13

● Need geometry and conditions data
● LHCb conditions change slowly (a 10 minute runs is considered short)
● All required geometry and conditions data are converted to blobs that

can be memcpy’d to the device and are fast to use
● Use parameterisations when possible,

e.g. currently no magnetic field map on the device
● Setup a Gaudi/LHCb application with a fake event loop “on the side”
● When data with a new run number arrives:

○ Finish processing data of previous run
○ Trigger a single event in the fake event loop to update blobs
○ Copy new blobs to the device
○ Restart processing

● A derived Gaudi::Application handles interaction with control system
● Input and output to the DAQ are Gaudi Services with an extra ABC

Integration with LHCb stack14

● Standalone build has helped developers
○ Easy to build anywhere
○ Fast turnover

● Getting into CUDA is not harder than C++
○ Parallel programming requires a different mindset
○ Good docs and examples are very important
○ Making it performant is hard

● A good and fast CI pipeline is a huge asset
○ Allen CI runs CPU and GPU builds and a representative set of

tests in about 10 minutes on every push to every MR
○ More extensive pipeline takes another 20 minutes
○ Fast feedback for developers

● Very agile development in the first years
○ Helped test new ideas
○ Great motivation for contributors

Development14

● Project grew quite fast from the start
● Good core team with complementary skills

○ GPU performance and parallel programming
○ Knowledge of the experiment and existing stack
○ Project management
○ Modern C++/CUDA
○ Mixed CS/HEP background

● Political support
● Support from DAQ/Online

● Most contracts are short, so bringing new people and skills on board
has to happen all the time

● Knowledge transfer is hard
● Skilled people are few.

○ They are highly motivated, but career prospects matter
○ Allen has already contributed to at least 4 people getting a big

grant or a permanent position.

People14

● Running in production since 2022
● Overall good performance, Allen has rarely been a bottleneck
● Many moving targets

○ DetDesc -> DD4hep
○ Quickly changing detector conditions
○ Different sets of detectors participating in data taking
○ Evolving sub-detector geometries and data formats

● Additional features requested and implemented with very fast turnover
○ Output of short trains of bunch crossings

● Minimal monitoring was a serious issue
○ Slowed-down iteration between detector experts and

reconstruction experts

Commissioning 1/215

Commissioning 2/216

● Performance has been good, 2nd GPU available since 2023
● Running at target pile-up
● Currently about 100 kHz of events per GPU

○ “matching” tracking sequence
○ ECal reconstruction
○ Fast MLPs for ghost rejection
○ electron ID, improved muon ID
○ nearly 90 selections
○ fixed-target experiment in parallel (SMOG)
○ luminosity measurement

● Monitoring improved for 2024
○ easy histograms on the device
○ double buffering

● Configuration provenance implemented for 2023
○ each configuration has unique identifier
○ stored in each event

● Too little protection against memory errors
○ Pool allocations make it worse
○ Move to span instead of raw pointers
○ Have tools to assist with debugging

● Two memory layouts of raw data supported
● Event loop code is very messy
● Complex application, many threads
● Too tight coupling between input handling, output handling, sequence

and overarching data-flow mode
● No Service equivalent, e.g. detector data store is a struct
● (Physics) Monitoring came quite late

○ Very important during commissioning
○ Device-side monitoring more important than we thought

● Glue-like interface to LHCb stack is not very elegant
● Need more tests

Framework Issues17

● LHCb Upgrade 2 baseline is all of HLT1 and all HLT2 reconstruction on
GPUs; particle combinatorics better done on CPUs

● Amount of preprocessing and reconstruction on FPGAs to be decided
● Gaudi has already solved many of the issues that Allen has
● Maintaining two frameworks makes little sense
● Impedance mismatch is actually rather small

● Put batched input data on the event data whiteboard
● DeviceAlgorithm that implements the two-step approach of Allen
● DeviceDataHandles to interact with the memory pool manager and

handle copying of data between host and device
● DeviceConditionAccessor to manage device geometry data using

derived conditions
● DeviceBatchContext to propagate the GPU stream
● No need for an additional portability framework
● Use LHCb’s CPU scheduler to schedule batches
● Static balancing of GPU/CPU load, i.e. as different sequences/applications

Future (IOHO)18

BACKUP

Throughput

LH
Cb

-F
IG

UR
E-

20
20

-0
14

B1

https://lhcbproject.web.cern.ch/lhcbproject/Publications/f/p/LHCb-FIGURE-2020-014.html

Reconstruction Sequence

GP
U

HL
T1

 T
DR

B2

https://cds.cern.ch/record/2717938/

Reconstruction Performance

LH
Cb

-F
IG

UR
E-

20
20

-0
14

B3

https://lhcbproject.web.cern.ch/lhcbproject/Publications/f/p/LHCb-FIGURE-2020-014.html

