Machine Learning Activities in SFT

Lorenzo Moneta

Introduction

New project in SFT for common ML activities

- ML4EP: provide service and support to the experiment on common ML issues
- Initiated by building on existing ML activities:
 - ML for fast simulation
 - ML software in ROOT
 - **SOFIE** (ML inference)
 - Batch generator

Simulation Tools Geant4	Analysis And Processing Tools ROOT	Software Distribution Tools CernVM-FS		
ML4EP				
Software Stacks / SPI				
Coordination Activities (HSF, EP R&D,)				

Fast Simulation Activities

FullSim

FastSim

Fast Simulation Activities

ML Models developed in CERN EP-SFT group

(Anna Zaborowska, Piyush Raikwar, Peter Mckeown, Renato Paulo Da Costa Cardoso)

Variational Autoencoder

- published with Geant4 release in example Par04
- small and quick to train
- reproduces well average shower variables (total energy, profile and moments)
- but blurry deposits

Fast Simulation Activities

Transformer based models

- focusing on modelling well cell-level variables as well as exploring generalisation power to multiple detectors
- Vector-quantized VAE + autoregressive: (see <u>CHEP 2023</u> presentation)
- More promising diffusion model, CaloDiT (see <u>ACAT 2024</u> presentation)

Diffusion Models for Simulation

Data

Noise

Normalizing Flows

Use of diffusion models for simulation

- Investigating transformer based architecture
 - A generalised architecture working with any type of data
 - Modelling long-range dependencies (attention mechanism)
- but longer time to evaluate the model

Plans for Fast Simulation Developments

Continue development of transformer based models

- aim to have best single-geometry diffusion model
- work on inference optimisation
- extend to different geometries and test its adaptation capabilities
- Work in collaboration with experiments
 - ATLAS: test VAE and transformer based modes
 - CMS: test transformer based model on HGCal
 - LHCb: develop best working model for hadronic showers

Community effort: CaloChallenge and Open Data detector

Machine Learning Inference

Motivation

Fast Evaluation of Machine Learning models is more and more relevant

- ML tools like Tensorflow/PyTorch have functionality for inference
 - can run only for their models
 - usage in a C++ environment can be cumbersome
 - require heavy dependence
- A standard for describing deep learning models:
 - ONNX ("Open Neural Network Exchange")
 - cannot describe all possible deep learning models (e.g. GNN) fully
- ONNXRuntime: an efficient inference engine based on ONNX
 - can work in both C++ and Python
 - supporting both CPU and GPU
 - can be challenging to integrate in the HEP ecosystem
 - control of threads, dependencies, etc..
 - not optimised for single-event evaluation

ONNX

Idea for Inference Code Generation

- An inference engine that...
 - Input: trained ONNX model file
 - Common standard for ML models
 - Supported by PyTorch natively
 - Converters available for Tensorflow and Keras

- Output: Generated C++ code that hard-codes the inference function
 - Easily invokable directly from other C++ project (plug-and-use)
 - Minimal dependency (on BLAS only)
 - Can be compiled on the fly using Cling JIT

SOFIE : System for Optimised Fast Inference code Emit

SOFIE

Outputs

1. Weight File

2. C++ header file

Code Generation

Using the Generated code: in C++

SOFIE generated code can be easily used in compiled C++ code

Using the Generated code: in Python

Code can be compiled using ROOT Cling and used in C++ interpreter or Python

```
import ROOT
# compile generate SOFIE code using ROOT interpreter
ROOT.gInterpreter.Declare('#include "Model.hxx"')
# create session class
s = ROOT.TMVA_SOFIE_Model.Session('model_weights.dat')
#-- event loop
# evaluate the model , input can be a numpy array
# of type float32
result = s.infer(input)
```


14

SOFIE Integration with RDataFrame

- SOFIE Inference code provides a Session class with this signature: vector<float> ModelName::Session::infer(float* input);
- **RDataFrame**(RDF) interface requires a functor with this signature: FunctorObj::operator()(T x1, T x2, T x3,....);
- Have a generic functor class adapting SOFIE signature to RDF: SofieFunctor<N, Session>
 - supporting multi-thread evaluation, using the RDF slots

```
ROOT::RDataFrame df("tree", "inputDataFile.root");
auto h1 = df.DefineSlot("DNN_Value",
SofieFunctor<7,TMVA_SOFIE_higgs_model_dense::Session>(nslots),
{"m_jj", "m_jjj", "m_lv", "m_jlv", "m_bb", "m_wbb", "m_wwbb"}).
Histo1D("DNN_Value");
h1->Draw();
```


GPU Extension of SOFIE

Extend SOFIE functionality to produce GPU code using SYCL

// generate SYCL code internally
model.GenerateGPU();
// write output header and data weight file
model.OutputGeneratedGPU();

Performance considerations

- Minimise overhead of data transfers between host and device
 - implement all on GPU and transfer data only at the beginning and at the end of the computation
- Manage buffers efficiently, declaring them at the beginning
- Use libraries for GPU Offloading:
 - GPU BLAS implementation from Intel oneAPI and portBLAS for other GPUs
- Fuse operators when possible (e.g. a layer op. with activation) in a single kernel
- Replace conditional check with relational functions
 - ensure work items do not execute different paths

17

ONNX Supported Operators

Operators implemented in ROOT	CPU	GPU
Perceptron: Gemm	√	✓
Activations: Relu, Selu, Sigmoid, Softmax, Tanh, LeakyRelu	~	✓
Convolution (1D, 2D and 3D)	~	✓
Recurrent: RNN, GRU, LSTM	~	
Pooling: MaxPool, AveragePool, GlobalAverage	~	✓
Deconvolution (1D,2D,3D)	\checkmark	✓
Layer Unary operators: Neg, Exp, Sqrt, Reciprocal, Identity	~	✓
Layer Binary operators: Add, Sum, Mul, Div	✓	✓
Reshape, Flatten, Transpose, Squeeze, Unsqueeze, Slice, Concat, Reduce, Gather	✓	✓
BatchNormalization, LayerNormalization	√	✓
Custom operator	✓	

- current CPU support available in ROOT 6.30
- GPU/SYCL is implemented in a <u>ROOT PR</u>

CPU Benchmark for Different Models

Test CPU event performance of SOFIE vs ONNXRuntime

(using batch size = 1)

Smaller = Better

Performance on CPU vs GPU

Using ResNet model

(rather heavier model, > 10 conv. layers with images sizes ~ 200x200)

Varying Batch size

Added SOFIE support GNN models

- Initiated with a network developed by LHCb:
 - Message Passing GNN built and trained using the DeepMind's Graph Nets library
 - model plan to be used in LHCb trigger using full event interpretation (see ACAT2024 contribution)
 - important to have efficient implementation and with minimal dependencies
- Available now in ROOT from version 6.32
 - supporting a dynamic number of nodes/edges

SOFIE GNN Support

Developed C++ classes for representing GNN structure.

- based on SOFIE RModel and the ROperator classes developed for supporting ONNX.
- SOFIE classes provide the functionality to generate C++ inference code
- Python code (based on PyROOT) for initialising SOFIE classes from the Graph Nets models

Benchmark of SOFIE GNN

Test inference performance of a toy architecture from LHCb

scaling number of nodes and edges

Future Steps

Integrate SOFIE in fast simulation pipelines

- supporting first VAE model
- looking also at FastCaloGAN in ATLAS
- Future developments (e.g. new operators) according to user needs and the received feedback
 - starting developments to support transformer models
- Continuing the support for different types of GPUs
 - plan to extend to ALPAKA (used by CMS) given some interest to deploy SOFIE in GPUbased trigger systems
- Want to support inference for ML models of the experiments in cases that are difficult to implement or require heavy dependencies
 - don't want to compete with existing industry tools for training
- Develop a complete benchmark (CPU time and memory) for models used by experiments and fast simulations
 - will guide experiments to choose the optimal tool for their used models

Other Activities

RBatchGenerator: Batching ROOT files

Serving tensors to ML training pipelines (ongoing R&D)

- Generate batches directly from a ROOT file
- As fast as traditional ML software
- Scales to very large file sizes
- Easy to add to workflow

- SFT is hosting common activities of Next Gen Trigger projects
 - Work on tools such as **hls4ml** (for DL) and **Conifer** (BDT) to develop ML to FPGA model synthesis tools, addressing the needs of the experiments.
 - Develop the software infrastructure needed to enable hardware-aware neural network training workflows.
 This work will enable the development and deployment of hardware-optimal AI-based real-time algorithms.

LHC Experiment Data Flow

ML in trigger and sensor applications must be implemented in FPGAs or custom ASICs
 Must be robust to noise and radiation and meet high throughput low latency requirements

high level synthesis for machine learning

from V. Lonchar at 24th IEEE Real-Time Conference

Using Large Language Models (LLM)

• AccGPT: A CERN Chatbot

- aim to be better than ChatGPT for specific CERN use case
- being developed in collaboration between CERN IT and ATS

The AccGPT pipeline:

• Retrieval Augmented Generation (RAG).

Based on two models:

- 1. Embedding model:
 - A pretrained open source model (e5large).
 - Retrieves "relevant content" from database.
- 2. Large Language Model (LLM):
 - A pretrained open source GPT model (LLaMA 2 13B).
 - Formulates responses using the "relevant content".

Accompanied by a self-created knowledge data base.

CERN

last IML meeting (April, 9) dedicated to LLM

AI/ML is fundamental for experiments

- New ML4EP project provides a place for sharing common AI/ML expertise within SFT and its stakeholders
 - Avoiding duplicating efforts
 - Can focus on supporting main activities and integrate new ones (e.g HLS4ML funded by NGT project)
 - Will foster the collaboration with IT and the AI/ML group of ATS

Backup Slides

SOFIE: Example Notebooks and Tutorials

- Example notebooks on using SOFIE:
 - https://github.com/Imoneta/tmva-tutorial/tree/master/sofie
- Tutorials are also available in the <u>tutorial/tmva</u> directory
- Link to SOFIE code in current ROOT master in GitHub
- Link to PR implementing SOFIE to SYCL code generation
- Link to benchmarks in rootbench

Dataset

We utilize a <u>dataset</u> similar¹ to "CaloChallenge Dataset 3". (<u>Talk</u> at CHEP'23)

For the shown preliminary results, we use the following subset (~100k samples):

- Angle of incident e⁻ = 70°, 80°, 90°
- Energy of incident e⁻ = 64, 128, 256 GeV
- Sampling calorimeter with silicon and tungsten layers² (SiW)

from P. Raikwar (CHEP 2023)

¹More incident angles and discrete energy spectrum ²Layer thickness: 0.3 mm + 1.4 mm for Si & W respectively