
Machine Learning Activities in SFT

Lorenzo Moneta

1

Introduction

▶ New project in SFT for common ML activities
● ML4EP: provide service and support to the experiment on common ML

issues
▶ Initiated by building on existing ML activities:

● ML for fast simulation
● ML software in ROOT

■ SOFIE (ML inference)
■ Batch generator

2

Fast Simulation Activities

3

FullSim FastSim

Fast Simulation Activities

ML Models developed in CERN EP-SFT group  
(Anna Zaborowska, Piyush Raikwar, Peter Mckeown, Renato Paulo Da Costa Cardoso)

▶ Variational Autoencoder
● published with Geant4 release in example Par04
● small and quick to train
● reproduces well average shower variables  

(total energy, profile and moments)
● but blurry deposits

4

Fast Simulation Activities

▶ Transformer based models

● focusing on modelling well cell-level
variables as well as exploring
generalisation power to multiple detectors

● Vector-quantized VAE + autoregressive:
(see CHEP 2023 presentation)

● More promising diffusion model, CaloDiT
(see ACAT 2024 presentation)

5

https://indico.jlab.org/event/459/contributions/11742/
https://indico.cern.ch/event/1330797/contributions/5796591/attachments/2819423/4923033/CaloDiT%20ACAT%2024%20(1).pdf

Diffusion Models for Simulation

Use of diffusion models for simulation
● Investigating transformer based architecture

■ A generalised architecture working with any type of data
■ Modelling long-range dependencies  

(attention mechanism)
■ but longer time to evaluate the model

6CaloDiT ACAT24

https://indico.cern.ch/event/1330797/contributions/5796591/attachments/2819423/4923033/CaloDiT%20ACAT%2024%20(1).pdf

Plans for Fast Simulation Developments

▶ Continue development of transformer based models
● aim to have best single-geometry diffusion model
● work on inference optimisation
● extend to different geometries and test its adaptation capabilities

▶ Work in collaboration with experiments
● ATLAS: test VAE and transformer based modes
● CMS: test transformer based model on HGCal
● LHCb: develop best working model for hadronic showers

▶ Community effort: CaloChallenge and Open Data detector

7

Machine Learning Inference

8

Motivation
▶ Fast Evaluation of Machine Learning models is more and more relevant
▶ ML tools like Tensorflow/PyTorch have functionality for inference

● can run only for their models
● usage in a C++ environment can be cumbersome
● require heavy dependence

▶ A standard for describing deep learning models:
● ONNX (“Open Neural Network Exchange”)
● cannot describe all possible deep learning models (e.g. GNN) fully

▶ ONNXRuntime: an efficient inference engine based on ONNX
● can work in both C++ and Python
● supporting both CPU and GPU
● can be challenging to integrate in the HEP ecosystem

■ control of threads, dependencies, etc..
■ not optimised for single-event evaluation

9

Idea for Inference Code Generation
▶ An inference engine that…

● Input: trained ONNX model file
■ Common standard for ML models
■ Supported by PyTorch natively
■ Converters available for Tensorflow and Keras

● Output: Generated C++ code that hard-codes the inference function
■ Easily invokable directly from other C++ project (plug-and-use)
■ Minimal dependency (on BLAS only)
■ Can be compiled on the fly using Cling JIT

▶ SOFIE : System for Optimised Fast Inference code Emit

10

SOFIE

11

▶ Parser: from ONNX to SOFIE::RModel class
▶ RModel: intermediate model representation
using namespace TMVA::Experimental::SOFIE;
RModelParser_ONNX parser;
RModel model = parser.Parse("Model.onnx");

▶ Code Generation: from RModel to a C++ file (Model.hxx)  
and a weight file (Model.dat or Model.root)

// generate text code internally
model.Generate();
// write output header and data weight file
model.OutputGenerated();

Generated code has minimal dependency
▶ only linear algebra library (BLAS) and no ROOT dependency
▶ can be easily integrated in any project

Code Generation

12

C++ code

namespace TMVA_SOFIE_Model{

struct Session {

 Session(std::string filename) {
 …………………..
 }
 std::vector<float> infer(float* input)
 {
 ………………….
 //— implementation of all operators
 ………………….

 return output_tensor;
 }
};
}

weight files

▶ SOFIE generated code can be easily used in compiled C++ code

Using the Generated code: in C++

13
See full Example tutorial code

#include “Model.hxx”
// create session class
TMVA_SOFIE_Model::Session ses(“model_weights.dat”);
//—- event loop
for (ievt = 0; ievt < N; ievt++) {
 // evaluate model: input is a C float array
 float * input = event[ievt].GetData();
 auto result = ses.infer(input);
 …..
}

1. include generated Model
header file

2. Create session class
(read weight data file)

3. Evaluate the model
calling Session::infer
function

https://root.cern.ch/doc/master/TMVA__SOFIE__Inference_8py.html

▶ Code can be compiled using ROOT Cling and used in C++ interpreter
or Python

import ROOT
compile generate SOFIE code using ROOT interpreter
ROOT.gInterpreter.Declare(‘#include “Model.hxx”’)
create session class
s = ROOT.TMVA_SOFIE_Model.Session(‘model_weights.dat’)
#—- event loop
…….
evaluate the model , input can be a numpy array
of type float32
 result = s.infer(input)

Using the Generated code: in Python

14See full Example tutorial code

Compile at run-time  
SOFIE generated code  
using Cling

https://root.cern.ch/doc/master/TMVA__SOFIE__Inference_8py.html

SOFIE Integration with RDataFrame
▶ SOFIE Inference code provides a Session class with this signature:

vector<float> ModelName::Session::infer(float* input);

▶ RDataFrame(RDF) interface requires a functor with this signature:
FunctorObj::operator()(T x1, T x2, T x3,….);

▶ Have a generic functor class adapting SOFIE signature to RDF: SofieFunctor<N,Session>
▶ supporting multi-thread evaluation, using the RDF slots

ROOT::RDataFrame df("tree", “inputDataFile.root”);
auto h1 = df.DefineSlot("DNN_Value",
SofieFunctor<7,TMVA_SOFIE_higgs_model_dense::Session>(nslots),  
{"m_jj", "m_jjj", “m_lv", “m_jlv","m_bb","m_wbb","m_wwbb"}).  
Histo1D(“DNN_Value”);
h1->Draw();

15
See full Example tutorial code in C++ or Python

https://root.cern.ch/doc/master/TMVA__SOFIE__RDataFrame_8C.html
https://root.cern.ch/doc/master/TMVA__SOFIE__RDataFrame_8py.html

▶ Extend SOFIE functionality to produce GPU code using SYCL
// generate SYCL code internally
model.GenerateGPU();
// write output header and data weight file
model.OutputGeneratedGPU();

GPU Extension of SOFIE

16

model.hxx
namespace TMVA_SOFIE_Linear_event{

struct Session {

Session(std::string filename ="") {
 if (filename.empty()) filename =
"Linear_event.dat";
 std::ifstream f;
 f.open(filename);
 // read weight data file
 …………………..
}
std::vector<float> infer(float*
tensor_input1){ with SYCL code

#include “Model.hxx”

// create session class

TMVA_SOFIE_Model::Session ses(“model_weights.dat”);

//—- event loop

for (ievt = 0; ievt < N; ievt++) {

 // evaluate model: input is a C float array

 float * input = event[ievt].GetData();

 auto result = ses.infer(input);

 …..

}

Inference code needs to be linked
against oneAPI MKL libraries and
compiled using SYCL compiler

GPU Implementation
Performance considerations
▶ Minimise overhead of data transfers between host and device

● implement all on GPU and transfer data only at the beginning and at the end
of the computation

▶ Manage buffers efficiently, declaring them at the beginning
▶ Use libraries for GPU Offloading:

● GPU BLAS implementation from Intel oneAPI and portBLAS for other GPUs
▶ Fuse operators when possible (e.g. a layer op. with activation) in a single

kernel
▶ Replace conditional check with relational functions

● ensure work items do not execute different paths
17

ONNX Supported Operators

18

Operators implemented in ROOT CPU GPU

Perceptron: Gemm ✓ ✓

Activations: Relu, Selu, Sigmoid, Softmax, Tanh, LeakyRelu ✓ ✓

Convolution (1D, 2D and 3D) ✓ ✓

Recurrent: RNN, GRU, LSTM ✓

Pooling: MaxPool, AveragePool, GlobalAverage ✓ ✓

Deconvolution (1D,2D,3D) ✓ ✓
 Layer Unary operators: Neg, Exp, Sqrt, Reciprocal, Identity

✓ ✓
 Layer Binary operators: Add, Sum, Mul, Div

✓ ✓
Reshape, Flatten, Transpose, Squeeze, Unsqueeze, Slice,
Concat, Reduce, Gather ✓ ✓

 BatchNormalization, LayerNormalization ✓ ✓

Custom operator ✓

• current CPU
support available
in ROOT 6.30

• GPU/SYCL is
implemented in a
ROOT PR

https://github.com/root-project/root/pull/13550/

CPU Benchmark for Different Models

▶ Test CPU event performance of SOFIE vs ONNXRuntime

19

Sm
al

le
r =

 B
et

te
r

DNN FastSim CNN 2D CNN 3D Resnet RNN LSTM RNN GRU CMS DDB
Deep Learning Models

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

Ti
m

e
re

la
tiv

e
to

 O
N

N
XR

un
tim

e

SOFIE

ONNXRuntime

Ubuntu 20.04 Intel 5000MHz (Batch Size = 1)
(using batch size = 1)

Performance on CPU vs GPU

20

Performance on GPU vs CPU (ResNet)

21

Using ResNet model
(rather heavier model,
> 10 conv. layers with images
sizes ~ 200x200)

Varying Batch size

SOFIE for Graph Networks

Added SOFIE support GNN models
▶ Initiated with a network developed by LHCb:

● Message Passing GNN built and trained using the DeepMind’s 
Graph Nets library
● model plan to be used in LHCb trigger using full event

interpretation (see ACAT2024 contribution)
● important to have efficient implementation and with minimal

dependencies
● Available now in ROOT from version 6.32

● supporting a dynamic number of nodes/edges
22

https://indico.cern.ch/event/1330797/contributions/5796657/

SOFIE GNN Support
▶ Developed C++ classes for representing GNN structure.

● based on SOFIE RModel and the ROperator classes developed for
supporting ONNX.

● SOFIE classes provide the functionality to generate C++ inference code
▶ Python code (based on PyROOT) for initialising SOFIE classes from the

Graph Nets models

23

RModel_GNN

Graph Nets GNN

Benchmark of SOFIE GNN

▶ Test inference performance of a toy architecture from LHCb
● scaling number of nodes and edges

24

Intel Linux Desktop MacOS M1

Future Steps
▶ Integrate SOFIE in fast simulation pipelines

● supporting first VAE model
● looking also at FastCaloGAN in ATLAS

▶ Future developments (e.g. new operators) according to user needs and the received
feedback

● starting developments to support transformer models
▶ Continuing the support for different types of GPUs

● plan to extend to ALPAKA (used by CMS) given some interest to deploy SOFIE in GPU-
based trigger systems

▶ Want to support inference for ML models of the experiments in cases that are difficult to
implement or require heavy dependencies

● don’t want to compete with existing industry tools for training
▶ Develop a complete benchmark (CPU time and memory) for models used by experiments

and fast simulations
● will guide experiments to choose the optimal tool for their used models

25

Other Activities

26

RBatchGenerator: Batching ROOT files
Serving tensors to ML training pipelines (ongoing R&D)

▶ Generate batches directly from a ROOT file
▶ As fast as traditional ML software
▶ Scales to very large file sizes
▶ Easy to add to workflow

27

Next Gen Trigger Activities

▶ SFT is hosting common activities of Next Gen Trigger
projects
● Work on tools such as hls4ml (for DL) and Conifer (BDT) to

develop ML to FPGA model synthesis tools, addressing the
needs of the experiments.

● Develop the software infrastructure needed to enable
hardware-aware neural network training workflows.  
This work will enable the development and deployment of
hardware-optimal AI-based real-time algorithms.

28

LHC Experiment Data Flow

▶ ML in trigger and sensor applications must be implemented in FPGAs or custom ASICs
▶ Must be robust to noise and radiation and meet high throughput low latency requirements

29

HLS4ML

30from V. Lonchar at 24th IEEE Real-Time Conference

https://indico.cern.ch/event/940112/contributions/5769668/attachments/2843574/4971299/PS_hawq_codesign_160.pdf

Using Large Language Models (LLM)
▶ AccGPT: A CERN Chatbot

● aim to be better than ChatGPT for specific CERN use case
● being developed in collaboration between CERN IT and ATS

31last	IML	mee+ng	(April,	9)	dedicated	to	LLM	

F.	Rehm	(Applied	AI	WS)

https://indico.cern.ch/event/1395528/
https://indico.cern.ch/event/1352021/contributions/5697770/attachments/2771877/4832340/AccGPT-AI_at_CERN_v5.pdf

Summary

▶ AI/ML is fundamental for experiments

▶ New ML4EP project provides a place for sharing common AI/ML
expertise within SFT and its stakeholders
● Avoiding duplicating efforts
● Can focus on supporting main activities and integrate new ones

(e.g HLS4ML funded by NGT project)
● Will foster the collaboration with IT and the AI/ML group of ATS

32

Backup Slides

33

SOFIE: Example Notebooks and Tutorials

▶ Example notebooks on using SOFIE:
▶ https://github.com/lmoneta/tmva-tutorial/tree/master/sofie

▶ Tutorials are also available in the tutorial/tmva directory

▶ Link to SOFIE code in current ROOT master in GitHub

▶ Link to PR implementing SOFIE to SYCL code generation

▶ Link to benchmarks in rootbench 

34

https://github.com/lmoneta/tmva-tutorial/tree/master/sofie
https://root.cern.ch/doc/master/group__tutorial__tmva.html
https://github.com/root-project/root/tree/master/tmva/sofie
https://github.com/root-project/root/pull/13550
https://github.com/root-project/rootbench/pull/239

35
from P. Raikwar (CHEP 2023)

https://indico.jlab.org/event/459/contributions/11742/

