~/_“

Machine Learning Activities in SFT

\j ,i 1

Lorenzo Moneta

Introduction

» New project in SFT for common ML activities

e MLA4EP: provide service and support to the experiment on common ML
Issues

» Initiated by building on existing ML activities:
e ML for fast simulation

Stakeholders
H Simulation Analysis And Software ALICE
® ML SOftware In ROOT Tools Processing Distribution ATLAS
. Tools Tools CMS
m SOFIE (ML inference) hce
Geant4 ROOT CernVM-FS =
m Batch generator :
IT projects
ML4EP AElF
FCC
Software Stacks / SPI

y Coordination Activities (HSF, EP R&D, ...)

X/

Fast Simulation Activities

hadronic

. region:
calorimeter

calorimeters

electromagnetic

calorimeter

region:
tracker

FullSim FastSim

Fast Simulation Activities

ML Models developed in CERN EP-SFT group [R

(Anna Zaborowska, Piyush Raikwar, Peter Mckeown, Renato Paulo Da Costa Cardoso)

» Variational Autoencoder /
e published with Geant4 release in example Par04
e small and quick to train R N
e reproduces well average shower variables
(total energy, profile and moments) N rosn

e but blurry deposits

Energy [Mev]
=
o

=
o
S

.
e

=1.02
1.00
n0.98

y 0 20 40 60 80
r [mm]

X/

m

MLSim/FullS

Fast Simulation Activities

» Transformer based models

e focusing on modelling well cell-level s o [Ge0. 20, Foneenin
variables as well as exploring
generalisation power to multiple detectors

e Vector-quantized VAE + autoregressive: - ‘1\
(see CHEP 2023 presentation) |

e More promising diffusion model, CaloDiT ™ "

(see ACAT 2024 presentation)

X/

https://indico.jlab.org/event/459/contributions/11742/
https://indico.cern.ch/event/1330797/contributions/5796591/attachments/2819423/4923033/CaloDiT%20ACAT%2024%20(1).pdf

Diffusion Models for Simulation

Fixed forward diffusion process

Generative : l\ Denoising
Adversarial - | : ", Diffusion
Networks/.- ", Models

Noise

!

Generative reverse denoising process

Variational Autoencoders,
Normalizing Flows

Use of diffusion models for simulation

—e— Geantd

—a— Single training
0.07

—»— Joint training

e Investigating transformer based architecture
B Ageneralised architecture working with any type of data)

B Modelling long-range dependencies
(attention mechanism)

B Dbut longer time to evaluate the model

+ + + v .
0 10 20 30 10
y z (ID)

7 CaloDiT ACAT24 6

0.06

0.05

> (MeV)

< E

https://indico.cern.ch/event/1330797/contributions/5796591/attachments/2819423/4923033/CaloDiT%20ACAT%2024%20(1).pdf

Plans for Fast Simulation Developments

» Continue development of transformer based models

e aim to have best single-geometry diffusion model

e work on inference optimisation

e extend to different geometries and test its adaptation capabilities
» Work in collaboration with experiments

e ATLAS: test VAE and transformer based modes

e CMS: test transformer based model on HGCal

e LHCb: develop best working model for hadronic showers
» Community effort: CaloChallenge and Open Data detector

@)

S 7

~/_“

Machine Learning Inference

\j ,i 8

Motivation

» Fast Evaluation of Machine Learning models is more and more relevant
» ML tools like Tensorflow/PyTorch have functionality for inference
e can run only for their models
e usage in a C++ environment can be cumbersome
e require heavy dependence
» A standard for describing deep learning models:
e ONNX (“Open Neural Network Exchange”) @
e cannot describe all possible deep learning models (e.g. GNN) fully
» ONNXRuntime: an efficient inference engine based on ONNX ONNX
e can work in both C++ and Python
e supporting both CPU and GPU

e can be challenging to integrate in the HEP ecosystem ONNX
m control of threads, dependencies, etc.. RUNTIME
y ® not optimised for single-event evaluation

S 9

|dea for Inference Code Generation

» An inference engine that...

e Input: trained ONNX model file @ e
®m Common standard for ML models —SOFIE——
m Supported by PyTorch natively ONNX
m Converters available for Tensorflow and Keras

e Output: Generated C++ code that hard-codes the inference function
m Easily invokable directly from other C++ project (plug-and-use)
B Minimal dependency (on BLAS only)
® Can be compiled on the fly using Cling JIT

» SOFIE : System for Optimised Fast Inference code Emit
)

</ 10

Outputs
1. Weight File

Input: Trained ML Model
(.onnx, .pt, .hb)

Parser: From ONNX (or Pytorch or
@ O N NX\ Keras) to SOFIE: :RModel >
O PyTorch { Sor't H RMode!
Keras -~ C

2. C++ header file

@)

i 11

Code Generation

» Parser: from ONNX to SOFIE::RModel class C++ code
» RModel: intermediate model representation .
using namespace TMVA::Experimental: :SOFIE; .
struct Session {

RModelParser_ ONNX parser;

RModel model = parser.Parse("Model.onnx"); Session(std::string filename) {

» Code Generation: from RModel to a C++ file (Model . hxx) L td: svector<floats infer(floats imput)
and a weight file (Model.dat or Model.root)

// generate text code internally

model .Generate();
// write output header and data weight file _a Yy
\ return output tensor;

model.OutputGenerated(); 2 }

¥\ weight files

Generated code has minimal dependency
P only linear algebra library (BLAS) and no ROOT dependency

P can be easily integrated in any project

N 12

X/

Using the Generated code: in C++

» SOFIE generated code can be easily used in compiled C++ code

#include “Model.hxx” < 1. include generated Model
// create session class header file
TMVA_SOFIE_Model::Session ses(“model_weights.dat”); €—— 2 (reate session class
//— event loop (read weight data file)

for (ievt = 0; ievt < N; ievt++) {
// evaluate model: input is a C float array
float * input = event[ievt].GetData();
auto result = ses.infer(input); < 3. Evaluate the model

calling Session::infer
} function

y See full Example tutorial code

X/

13

https://root.cern.ch/doc/master/TMVA__SOFIE__Inference_8py.html

Using the Generated code: in Python

» Code can be compiled using ROOT Cling and used in C++ interpreter
or Python

import ROOT
compile generate SOFIE code using ROOT interpreter

ROOT.gInterpreter.Declare(‘#include “Model.hxx”’') 4?“"“" ﬁgﬁgiﬁﬁge”ﬂedcode

Compile at run-time

create session class
s = ROOT.TMVA_SOFIE_ Model.Session(’‘model_weights.dat’)
#—— event loop

evaluate the model , input can be a numpy array
of type float32
result = s.infer(input)

\/ See full Example tutorial code 14

https://root.cern.ch/doc/master/TMVA__SOFIE__Inference_8py.html

SOFIE Integration with RDataFrame

» SOFIE Inference code provides a Session class with this signature:
vector<float> ModelName::Session::infer(float* input);

» RDataFrame(RDF) interface requires a functor with this signature:
FunctorObj::operator()(T x1, T x2, T x3,...);

» Have a generic functor class adapting SOFIE signature to RDF: SofieFunctor<N, Session>
» supporting multi-thread evaluation, using the RDF slots

ROOT: :RDataFrame df("tree", “inputDataFile.root”);

auto hl = df.DefineSlot("DNN Value",
SofieFunctor<7,TMVA_SOFIE_higgs_model_dense::Session>(nslots),
{ llm_jj n ; llm_j jj n i llm—lvll . llm—j lvll , llm_bb n , llm_wbb n , llm_wwbb n }) .
HistolD(“DNN Value”);

hl->Draw();

y See full Example tutorial code in_C++ or Python
N/ 15

https://root.cern.ch/doc/master/TMVA__SOFIE__RDataFrame_8C.html
https://root.cern.ch/doc/master/TMVA__SOFIE__RDataFrame_8py.html

GPU Extension of SOFIE

» Extend SOFIE functionality to produce GPU code using SYCL

// generate SYCL code internally
model.GenerateGPU();

// write output header and data weight file
model.OutputGeneratedGPU();

#include “Model.hxx”
// create session class
TMVA_SOFIE_Model::Session ses(“model_weights.dat”);
//— event loop
for (ievt = 0; ievt < N; ievt++) {
// evaluate model: input is a C float array

m Od e I - hXX float * input = event[ievt].GetData();

auto result = ses.infer(input);

namespace TMVA_SOFIE_Linear_event{

struct Session { [}

Session(std::string filename ="") {
if (filename.empty()) filename =
"Linear_ event.dat";

R Inference code needs to be linked
[/ read ueloht data fiie against oneAPI MKL libraries and

;td:::;;::;<float> infer(float* 1 com -Ied S-n SYCL com -|el"
y tensor_inputl){ ¢ Wlth SYCL Code pl usli g pl 16

GPU Implementation

Performance considerations
» Minimise overhead of data transfers between host and device

e implement all on GPU and transfer data only at the beginning and at the end
of the computation

» Manage buffers efficiently, declaring them at the beginning
» Use libraries for GPU Offloading:
e GPU BLAS implementation from Intel oneAPI and portBLAS for other GPUs

» Fuse operators when possible (e.g. a layer op. with activation) in a single
kernel

» Replace conditional check with relational functions

@ v e ensure work items do not execute different paths
. 17

ONNX Supported Operators

Operators implemented in ROOT CPU GPU

Perceptron: Gemm 4 v

Activations: Relu, Selu, Sigmoid, Softmax, Tanh, LeakyRelu v v

Convolution (1D, 2D and 3D) v e

Recurrent: RNN, GRU, LSTM v

Pooling: MaxPool, AveragePool, GlobalAverage v v

Deconvolution (1D,2D,3D) v v

: . : » current CPU
Layer Unary operators: Neg, Exp, Sqgrt, Reciprocal, Identity v v support available
Layer Binary operators: Add, Sum, Mul, Div v v in ROOT 6.30
Reshape, Flatten, Transpose, Squeeze, Unsqueeze, Slice,) .GPU/SYCL Is.
Concat, Reduce, Gather v v implemented in a
ROOT PR
@ y BatchNormalization, LayerNormalization v v
ad Custom operator v 18

https://github.com/root-project/root/pull/13550/

CPU Benchmark for Different Models

» Test CPU event performance of SOFIE vs ONNXRuntime

(using batch size = 1)
Ubuntu 20.04 Intel 5000MHz (Batch Size = 1)

B soFie

==== ONNXRuntime

N

1.8
1.6
1.4
1.2

0.8
0.6
0.4
0.2

Smaller = Better

Time relative to ONNXRuntime

o

y \ 4 DNN FastSim CNN2D CNN3D Resnet RNNLSTM RNNGRU CMS DDB
Deep Learning Models

N/

19

103

102

10!

10°

1071

Time/event (ms)

1072

1073

Performance on CPU vs GPU

Linear_64 Conv_d100_L14 B32 resnetl8vl_B1l
722

415
16.7 30.7
. 15.4
8.7 10.6
4.8 68
I | I I

138 135

Platform
Intel CPU + ONNXRUNTIME (32 Threads)
Intel CPU + C++ w/ MKL BLAS
Intel CPU + C++ w/ NETLIB
NVIDIA GPU + SYCL w/ portBLAS
Intel GPU + SYCL w/ portBLAS
Intel GPU + SYCL w/ MKL BLAS

0.15 0.16

0.03
0.00
0.00
0.OO]..
.

20

Performance on GPU vs CPU (ResNet)

30.71
30 Platform
mm [ntel CPU w/ MKL BLAS
25 mm NVIDIA GPU w/ portBLAS

N
o

15.35

Time/event (ms)
=
u

11.92
10.56
10 8.458 Using ResNet model
(rather heavier model,
5 > 10 conv. layers with images
1.044 sizes ~ 200x200)
0 —
1 16 32 Varying Batch size
Y Batch Size

> 21

SOFIE for Graph Networks

Added SOFIE support GNN models

» Initiated with a network developed by LHCb:

e Message Passing GNN built and trained using the DeepMind’s
Graph Nets library

e model plan to be used in LHCDb trigger using full event
interpretation (see ACAT2024 contribution)

e important to have efficient implementation and with minimal
dependencies

e Available now in ROOT from version 6.32
=5 e supporting a dynamic number of nodes/edges

N/

https://indico.cern.ch/event/1330797/contributions/5796657/

SOFIE GNN Support

» Developed C++ classes for representing GNN structure.

e based on SOFIE RModel and the ROperator classes developed for
supporting ONNX.

e SOFIE classes provide the functionality to generate C++ inference code

» Python code (based on PyROOT) for initialising SOFIE classes from the
Graph Nets models

RModel

RRRRRR ion_Update RFunction_Aggregate RO p e r at 0 r
RModel_GNN |

|
i l [| e “HWmmq

RFunction_MLP RFunction_Mean RFunction_Sum

\/ Graph Nets GNN
> 23

Benchmark of SOFIE GNN

P Test inference performance of a toy architecture from LHCb
e scaling number of nodes and edges

Intel Linux Desktop MacOS M1
pn_— — /a :
w — ~— —
;;/0.35 - 04 =
2 F L b
O 03— ®0.35—
€ C £ -
F F F osf
0.25=
—4@— SOFIE Intel OpenBlas 0.25 @— SOFIE MacOS Mf
0-2] —@— SOFIE Intel MKL 0.2| —F— Graph-Nets Macos M1
0.15 —=f=— Graph-Nets Intel (Eigem) ’ -
E 0.15—
0.1 :— 0.1 :_
0.05[— 0.05F~
N L L l L ! L I L L 1 I N L ! | L ! L I L 1 1 1 I 1 1 1 | 1 1 1 I 1 1 1 I 1 1 1 I 1
—~ 0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
C\ERNy GNN size (nodes+edges) GNN size (nodes+edges)
2 24

Future Steps

» Integrate SOFIE in fast simulation pipelines
e supporting first VAE model
e looking also at FastCaloGAN in ATLAS
» Future developments (e.g. new operators) according to user needs and the received
feedback
e starting developments to support transformer models
» Continuing the support for different types of GPUs

e plan to extend to ALPAKA (used by CMS) given some interest to deploy SOFIE in GPU-
based trigger systems

» Want to support inference for ML models of the experiments in cases that are difficult to
implement or require heavy dependencies
e don’t want to compete with existing industry tools for training
» Develop a complete benchmark (CPU time and memory) for models used by experiments
and fast simulations
Y e will guide experiments to choose the optimal tool for their used models

> 25

~/_“

Other Activities

RBatchGenerator: Batching ROOT files

B TensorFlow

Serving tensors to ML training pipelines (ongoing R&D) [" ReatchGenerator
» Generate batches directly from a ROOT file ..
» As fast as traditional ML software
» Scales to very large file sizes
> Easy tO add tO WOf'kﬂOW 0 6.;) 65 70 75 80 85 90 95 100
batch processing time (ms)
__ 1.0 : :g:)t(:;Generator
|| -
[| 808-
| E—— o
[E— =
[— >
[— S
E0.4
L 2 ==
| E—
| m—

0.0 g g T . T T .
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

C\E/R RDataframe RTensor Output format file size (b) -~
> (on disk) (in memory) 27

Next Gen Trigger Activities

» SFT is hosting common activities of Next Gen Trigger
projects
e Work on tools such as hls4dml (for DL) and Conifer (BDT) to
develop ML to FPGA model synthesis tools, addressing the
needs of the experiments.
e Develop the software infrastructure needed to enable
hardware-aware neural network training workflows.

This work will enable the development and deployment of
hardware-optimal Al-based real-time algorithms.

28

LHC Experiment Data Flow

DATA FLOW

» ML in trigger and sensor applications must be implemented in FPGAs or custom ASICs
» Must be robust to noise and radiation and meet high throughput low latency requirements

@)

> 29

HLS4ML

high level synthesis for machine learning

Menibor

+T1'~ " \ !;!,!TLESR ! Catapult

Kaki Coming Soon

TensorFlow

PyTorch

Y. Co-processing kernel

- his 4 ml

compressed
model /—| HS |__,
conversion Custom firmware
Usual ML design

software workflow jf
tune configuration

precision
reuse/pipeline

PYTHRCH
& ONNX https.//fastmachinelearning.org/hls4ml/

\/y from V. Lonchar at 24th IEEE Real-Time Conference 30

https://indico.cern.ch/event/940112/contributions/5769668/attachments/2843574/4971299/PS_hawq_codesign_160.pdf

Using Large Language Models (LLM)

» AccGPT: A CERN Chatbot

e aim to be better than ChatGPT for specific CERN use case
e being developed in collaboration between CERN IT and ATS

The AccGPT pipeline: Based on two models:

 Retrieval Augmented Generation (RAG). 1. Embedding model:

A pretrained open source model (e5-
! large).
Retrieves ,relevant content” from
database.

Relevant 2. Large Language Model (LLM):
Content

Embedding
A pretrained open source GPT model
(LLaMA 2 13B).

Formulates responses using the
| srelevant content®.

F. Rehm (Applied Al WS)

Accompanied by a self-created
knowledge data base.

\/ last IML meeting (April, 9) dedicated to LLM

31

https://indico.cern.ch/event/1395528/
https://indico.cern.ch/event/1352021/contributions/5697770/attachments/2771877/4832340/AccGPT-AI_at_CERN_v5.pdf

Summary

» AI/ML is fundamental for experiments

» New ML4EP project provides a place for sharing common AI/ML
expertise within SFT and its stakeholders

e Avoiding duplicating efforts

e (Can focus on supporting main activities and integrate new ones
(e.g HLS4ML funded by NGT project)

e Will foster the collaboration with IT and the AI/ML group of ATS

32

Backup Slides

SOFIE: Example Notebooks and Tutorials

» Example notebooks on using SOFIE:

P https://github.com/Imoneta/tmva-tutorial/tree/master/sofie

» Tutorials are also available in the tutorial/tmva directory

» Link to SOFIE code in current ROOT master in GitHub

» Link to PR implementing SOFIE to SYCL code generation

» Link to benchmarks in rootbench

@)

v 34

https://github.com/lmoneta/tmva-tutorial/tree/master/sofie
https://root.cern.ch/doc/master/group__tutorial__tmva.html
https://github.com/root-project/root/tree/master/tmva/sofie
https://github.com/root-project/root/pull/13550
https://github.com/root-project/rootbench/pull/239

6" Geant4

from P. Raikwar (CHEP 2023)

Dataset

We utilize a dataset similar?! to “CaloChallenge Dataset 3”. (Talk at CHEP’23)

V4

P segments

= R slices

A
— =oe0)

B N layers I’xq0xZ=18x50><45

‘s / / ‘y/ /
\

Vol

<
>_N
></
t

ey
//\\ \

For the shown preliminary results, we use the following subset (~100k samples):
e Angle of incident e = 70°, 80°, 90°
e Energy of incident e = 64, 128, 256 GeV

e Sampling calorimeter with silicon and tungsten layers? (SiW)

IMore incident angles and discrete energy spectrum
2Layer thickness: 0.3 mm + 1.4 mm for Si & W respectively

https://indico.jlab.org/event/459/contributions/11742/

