

Recent/Upcoming developments A. Salzburger (CERN)

Upcoming developments

Geometry & Material

Event Data Model

Track Finding & Fitters

Vertexing

R&D lines (ML, GPU)

Geometry (1)

- ▶ Geometry model of ACTS stems from ATLAS Trk::TrackingGeometry
 - Conceptual building blocks

TrackingVolume Layer Quite some overlap between those

Surface

- detray GPU R&D geometry: re-implemented w/o layer concept
 - huge simplification in navigation code
 - can we do this also for ACTS/Core?

Geometry (2) - Experimental

▶ Experimental::Detector Geometry model of ACTS

Acts::Surface	Acts::Surface	Surface objects are unchanged, allows client code to be untouched
Acts::Layer		Layer objects do not exist anymore, they are represented by volumes
Acts::TrackingVolume	Acts::Experimental:: DetectorVolume	Double serving of volumes as containers or navigation volumes omitted
Acts::BoundarySurfaceT <acts::trackingvolume></acts::trackingvolume>	Acts::Experimental:: Portal	Portal objects are not templated anymore, they are holder classes of surfaces and volume switches
Acts::TrackingGeometry	Acts::Experimental:: Detector	Portal objects the top level entry point that will guide into the root volumes

Geometry (3) - Blueprint

▶ New type of geometry building using Experimental::Blueprint

Translation of objects from geometry model,

e.g. DD4hep

from one source, but not necessarily

Logic of how to build/group

Detector Blueprint

Instruction set how to build the detector

Geometry (4) - Blueprint

▶ New type of geometry building using Experimental::Blueprint

Geometry (5) - Blueprint on ODD

ODD building blueprint from DD4hep:

Resulting ODD detector

Gen2 geometry - more developments

- In Gen2 geometry, navigation is outsourced to Delegates
 - allows for client-specified navigation
 - helped developing first prototypes for (ATLAS) Muon System

Mock up muon sector spectrometer.

Every detector volume holds the navigation delegate

Geometry (6) - Quo vadis?

```
▶ Gen1 geometry: Acts::TrackingGeometry
     Well established, baseline
▶ Gen2 geometry: Acts::Experimental::Detector -
     Blueprint
     Layer-less
     Navigation delegates
                • Gen3 geometry:
```

- adiabatic merge of those two concepts?
- morph of Gen2 into full functionality of Gen1?

Material

- New Grid based material classes introduced
- Material mapping/validation without & with propagation/navigation
 - This is to allow for material mapping/ validation with optionally bypassing the propagator infrastructure
 - Support for Gen1/Gen2 geometry model

- Move most material mapping/validation into Core
 - Allow for more seemingness integration into SW stack

Event Data model

MultiTrajectory with frontend/backend split

ACTS has an internal EDM optimised for track reconstruction.

- recent work to separate transient model from I/O backend
- demonstrator with
 PODIO established
- Non-optimised
 EDM4Hep version
 also available

[Paul Gessinger-Befurt, CHEP2023, Parallel talk]

Fitters (1)

- Gaussian Sum Filter has been validated on Open Data Detector
 - shows nice performance on Geant4 simulated results
 - Is designed as a re-fitter, i.e. after electron pattern recognition
- Electron pattern recognition not yet implemented
 - start with concept from ATLAS to enlarge window if electron hypothesis is triggered ...

Fitters (2)

- Global chi2 fitter progress
 - First pipe-line on OpenDataDetector implemented
- Material effect integration not yet implemented
 - Exists in a python based prototype

(C)KF refinements

- Speed performance optimisation
 - Work on a new stepper has started
- Combinatorial Kalman filter updates
 - Improved branch stopping logic introduced
 - Smoothing separated from forward filtering
 - New, alternative CKF with external propagator steering in development

Vertex reconstruction: fully time-aware

- Introduction of time in all components of vertex reconstruction
 - full exercise on OpenDataDetector in progress

R&D line: parallelisation

- First chain runs on OpenDataDetector in stand-alone
 - Performance (physics/computing) evaluation to start
- Integration of 'traccc' suite as Plugins started
 - Aim is to be able to evoke a traccc reconstruction chain from ACTS

R&D line: machine learning

- NN based cluster position / calibration
 - NN based clusterization available

