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Outline

• Introduction to weak-strong beam-beam model

• Strong-strong beam-beam model and challenges

• Some currently used beam-beam codes

• Outlook for modeling beam-beam effects
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Weak-Strong Beam-Beam Model at IP (cont’d)

• Strong beam is not affected by the weak beam

• Particles in the weak beam drift to the collision point

• Beam-beam forces from the strong beam are applied to the weak beam particles

• Weak beam particles drift back to its original locations

IP IP

CP
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Weak-Strong Beam-Beam Model at IP

K. Hirata, H. Moshammer, F. Ruggiero, Particle Accelerator, 1993, vol. 40, p. 205.
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Weak-Strong Beam-Beam Model

• Codes including weak-strong beam-beam only: MAD-X, BMAD, Lifetrack…

• Weak-strong beam-beam model is fast but lacks accuracy:
→ Not self-consistent 

→ Cannot model coherent motion of two beams



multiple slices multiple slices

• Each collision needs N2 Poisson Solutions

• Strong-strong beam-beam model is self-consistent but 

much slower than the weak-strong model 

1st Challenge: Speed

Strong-Strong Beam-Beam Model at IP

IP IP

CP
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Fast Efficient Poisson Solver Needed to Improve Speed
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Direct summation of the convolution scales as N2 !!!!

N – total number of grid points



Green’s Function Convolution Can Be Computed 

Effectively
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Hockney’s Algorithm:- scales as (2N)2log(2N)

- Ref: Hockney and Easwood, Computer Simulation using Particles, McGraw-Hill Book Company, New York, 1985.

Shifted Green function Algorithm:
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Good Agreement between the Numerical Solution from 

the Shifted Green Function and the Analytical Solution

beam-beam field vs. radius



Integrated Green Function Method Is More Effective to 

Handle Large Aspect Ratio Beam 
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Integrated Green function Algorithm for large aspect ratio:
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Parallel Computing Implementation Is Needed to 
Improve Speed

Frontier uses 9,472 AMD Epyc 7713 "Trento" 64 core 2 GHz CPUs (606,208 

cores) and 37,888 Instinct MI250X GPUs (8,335,360 cores).

https://en.wikipedia.org/wiki/EpycThird_generation_Epyc_(Milan)
https://en.wikipedia.org/wiki/AMD_Instinct


fff

Time(s)
MPI tasks

OMP in 
each MPI

4 8 16 32 64 128 256 512 1024

1 780.07 448.05 286.25 221.53 158.12 129.03 137.88 165.39

2 447.51 285.59 219.9 160.6 98.45 93.23 131.08 137.7

4 402.98 271.21 135.55 88.29 62.1 74.91 91.24

8 273.83 148.53 76.12 54.68 60.75 74.12

16 150.49 74.29 49.85 56.85 58.44

32 87.19 65.47 59.51 67.8

64 117.94 94.86 103.24

Parallel Strong Scaling of a Strong-Strong Beam-Beam 
Model Using Both MPI and OpenMP

• Message Passing Interface (MPI) is a distributed memory parallel programing paradigm

• OpenMP is a shared memory parallel programming paradigm

• A hybrid MPI and OpenMP provides the best performance



Central Processing Unit (CPU) versus Graphics 

Processing Unit (GPU)

vs.

The architecture of the GeForce GTX 1060 GPU processor 

CPU: fewer number of cores, each core is more powerful, 

slower communication

GPU: large number of cores, each core is less powerful, 

faster communication



Speedup of a PIC Code on GPUs

Speedup of the beam dynamics GPU PIC Code on a single 

GPU versus the number of particles

Scalability of the PIC code using 64 64 64 × × grid points 

and 1.6M particles on Titan.

• For small problem sizes, a single GPU can be more than 50 faster than a CPU core

• For a larger problem size, a single GPU can be more than 30 faster than a CPU core

• The PIC code does not scale well beyond 8 GPU for the fixed problem size

Z. Liu and J. Qiang, Journal of Software Engineering and Applications 12, p. 321 (2019).
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Self-Consistent PIC Based Strong-Strong Beam-Beam 

Model is Subect to Numerical Noise

Self-Consistent Beam-Beam Simulation 
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2nd Challenge: Accuracy



Efficient Green’s Function Method to the Poisson 
Equation for Beam-Beam Force Calculation (1)

J. Qiang, “Advances in the simulation of space-charge effects,” J. of Instrumentation 15 P07028, 2020.

1D Gaussian function from macroparticle sampling 

deposition and from the function itself

1D Gaussian Function Spectrum of  the Gaussian Function

• Numerical noise results from finite macroparticle sampling

• Such noise causes fluctuation in beam-beam forces → numerical emittance growth

16
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Predicted Luminosity Degradation from Beam-Beam 
Simulation Depends on the Number of Macroparticles

• Strong-strong beam-beam simulation subject to numerical noise 

driven emittance growth and luminosity degradation

• Increase of macroparticle number helps reduce numerical noise effects

with crossing angle/crab cavity

0.25 M

0.5 M

1 M

2 M

0 crossing angle/crab cavity

0.25 M

0.5 M

1 M

2 M
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Reducing the Numerical Noise Effects through a 

Spectral Method

a

b
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A Spectral Method Might Be Used to Mitigate the 

Numerical Noise Driven Emittance Growth

- Green’s function

- Spectral method 

• Much smaller numerical noise driven emittance growth using the spectral method 

in a LHC application
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Electron Beam Vertical RMS Size Evolution from Strong-Strong 
Simulation in an EIC Design

• Electron beam blow up due to strong coherent beam-beam 

effects seen in strong-strong simulation

designed beam size



Step 1:

Step 2:

Step 3:

A Hybrid Strong-Strong and Weak-Strong Model

• Run fully strong-strong beam-beam simulation for a number of turns

• Store the beam-beam interaction potentials during the electron and proton 

collision

• Switch to weak-strong simulation using the stored beam-beam potentials

beam-beam 

potential

collision steps e beam p beam
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Horizontal and Vertical RMS Emittance Evolution

horizontal vertical

switch to weak-strong

Less Numerical Emittance Growth in Proton Beam with 

the Faster Strong-Strong and Weak-Strong Simulation

switch to weak-strong

22



3rd Challenge: Beyond Beam-Beam Only Model: Inclusion of 

Wakefield, Space-Charge, Intrabeam Scattering, etc
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Electron and Proton Beam Transverse Average Action Evolution with Wakefield Only in the EIC

Electron and Proton Beam Transverse Average Action Evolution with Wakefield and Beam-Beam



Strong-Strong Beam-Beam and Wakefield Model Shows 

More Instability Stopband than Weak-Strong Model  
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CS Parameter Growth Rate vs. Proton Beam Horizontal Tune with 

Fixed EIC CDR Electron Beam Tunes (0.08,0.06) and Vertical Tune (0.21)



Instability Stopbands Move with the Electron Beam Tune  
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CS Parameter Growth Rate vs. Proton Beam Horizontal Tune with 

Fixed New Electron Beam Tunes (0.12,0.06) and Vertical Tune (0.21)



List of Beam-Beam

Codes

Ref: P. Kicsiny et al., FCC week, 11 June 2024. 
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BeamBeam3D: A Parallel Colliding Beam Simulation 
Code (https://github.com/beam-beam/BeamBeam3D)

• Multiple-slice model for finite bunch length

• New algorithm -- shifted Green function -- efficiently 

models long-range collisions  

• Parallel particle-field based decomposition to 

achieve perfect load balance

• Lorentz boost to handle crossing angle

• Arbitrary closed-orbit separation

• Multiple bunches, multiple collision points

• Linear transfer matrix + one turn 

chromaticity+amplitude dependent tune

• Read-in 2nd order + 3rd order transfer maps

• Conducting wire, crab cavity, e-lens compensation 

model

• Feedback model

• Impedance model (short-range+long-range, x+y+z)

• Beamstrahlung model

Some key features of the BeamBeam3D

J. Qiang et al., “A Parallel Particle-In-Cell Model for Beam-Beam Interactions in High Energy Ring Colliders,” J. Comp. Phys. vol. 198, 278 (2004).



Introduction of IBB

28

• Linear Arc Map with SR radiation

• One turn map including general chromaticity

• Horizontal crossing angle: Lorentz boost map

• Bunch slice number is about 10 times Piwinski angle

• Slice-Slice collision: 
o Synchro-beam mapping method 

o Integral of Green function (flat beam)

o PIC: FACR -> FFT (shift Green method)

• Beamstrahlung: Synchrotron radiation during collision

• Longitudinal wakefield
o Impact of Potential-well-distortion on X-Z instability

• Transverse wakefield
o Impact of vertical beam-beam impedance on TMCI instability

• Multiple IPs and Multiple Bunches

• Combination of lattice and beam-beam: IBB->APES-T

W/O Longitudinal Impedance

W/ Longitudinal impedance

Y. Zhang et al., PRST-AB, 8, 074402 (2005)



SimTrack
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• A c++ library for 6-d symplectic element-by-element particle 

tracking in circular accelerators. It includes 4th symplectic

integration through magnets and 6-d synchro-beam map for 

weak-strong beam-beam. 

• Since its inception in 2009, SimTrack has been intensively used 

for dynamic aperture calculations with beam–beam interaction 

for RHIC. Recently a strong-strong beam-beam code (OMP) was 

built on SimTrack for the EIC beam-beam simulations. 

• Features of SimTrack:

o 1) c++ class based: easy to define new element types

o 2) element & line manipulations: insert, delete, revert, rewind

o 3) linear optics calculation, together with limited nonlinear optics 

calculation and limited optimization methods 

o 4) element parameters can be changed during tracking

o 4) track hadrons and electrons

o 5) spin tracking included

Ref: Y. Luo, “SimTrack: A compact c++ code for particle orbit and spin tracking in 

accelerators‘’,  NIMA, v801, pp.95-103, 2015.

DA calculation

W-S BB simulation

S-S BB simulation

BB+ crab cavity noises

RHIC

EIC



Outlook for Modeling Beam-Beam Effects 
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• Incorporate AI/ML into beam-beam modeling

• Apply differentiable simulation to the beam-beam modeling

• Integrate beam-beam simulation with optimization



Differentiable Simulation

• How sensitive is the luminosity w.r.t. these design parameters (~30)?

• The differentiable simulation is a simulation that can automatically  

compute derivatives of the simulation result with respect to its input  

parameters.
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Derivatives of the X and Y Emittances w.r.t. 7 Lattice Parameters  

from 1 Differentiable Simulation and from Finite Difference  

Approximation with Multiple Simulations Shows Good Agreement
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