

BEAM-BEAM EFFECTS AT THE FCC-ee

Peter Kicsiny, X. Buffat, V. Gawas, G. Iadarola, K. Oide, T. Pieloni, J. Salvesen, L. van Riesen-Haupt

for the beam-beam working group, with special thanks to: H. Burkhardt, C. Carli, F. Carlier, M. Hofer, D. Schulte, M. Seidel, D. Shatilov, D. Zhou

ICFA mini workshop: Beam-Beam Effects in Circular Colliders BB24 02 September 2024

This work was performed under the auspices and with support from the Swiss Accelerator Research and Technology (CHART) program.

Overview

• FCC-ee will be a highly complex machine

• Interplay of various effects

lattice nonlinearities

Overview

• FCC-ee will be a highly complex machine

Interplay of various effects

• Presence of beam-beam collisions further complicates beam dynamics

Self-consistent simulations are challenging

Design studies so far

- Design strategy: balancing several effects
 - Past studies on parameter optimization [1,2]
- Constraint on beam current: 50 MW synrad power
 - Constrains beam parameters at IP
 - Different challenges at each energy
- In general: high energy & charge density

beamstrahlung non-Gaussian tails reduced beam lifetime

- Goal: increase lumi by keeping lifetime long enough & avoid instabilities
- This talk: overview of ongoing studies

Radiation at FCC-ee collisions

Incoherent

- Radiative Bhabha scattering
- Deflection in field of single particle of opposite bunch

<u>Collective</u>

- Beamstrahlung
 - Deflection in collective field of opposite bunch

Radiation \blacktriangleright particle losses $\tau \mathcal{L} \gtrless \sigma_z \sigma_\delta$

lifetimes: BS ~100 min BH ~30 min

Beam-beam force High lumi strong beam-beam force

$$L = \frac{\gamma}{2er_e} \cdot \frac{I_{tot}\xi_y}{\beta_y^*} \cdot R_{hg}$$

Consolidation...

- Radiation (synchrotron radiation, beamstrahlung, Bhabha)
- IP tuning & feedback
- Beam asymmetries
- Top-up injection

FCC 02 September 2024 BB24

- Different beam-beam codes exist, with different features
- FCC-ee: self-consistent & fast modeling needed including many effects
- Xsuite: development driven by needs for FCC-ee

G. ladarola, talk @ this workshop

IP tuning & optimization

Design schemes to infer and correct for imperfections based on different signals (radiation, orbit measurements, ...)

- Waist & dispersion shifts, beam offsets (fast IP feedback)
- Using GUINEA-PIG (single passage), multiturn effects with Xsuite need to be considered

V. Gawas, talk @ this workshop

IP tuning & optimization

- Development of tuning knobs to vary beam configuration at the IP (waist)
 - Determine whether optics can be relaxed for better performance (e.g. easier startup)
 - Design experimental methods for waist correction based on luminosity
- Larger sensitivity in luminosity for vertical but smaller in horizontal waist
- Tests with machine errors in progress

Dynamic aperture

w/o errors

- Negligible reduction from beam-beam
- Compares well with SAD results from K. Oide [13]

L. van Riesen-Haupt, talk @ this workshop

- More lattice induced resonances are seen with beam-beam due to large amplitude detuning
- Full lattice needs to be optimized with beambeam included
- Tools are ready, requires work with tuning working group to establish correction strategies

Top-up injection & asymmetry scans^{1.02}

Longitudinal top-up simulated with Xsuite

- Perturbed bunch init. with 95% intensity
- Track till equilibrium & top-up
- Luminosity lower than in symmetric case (L₀) due to vertical blowup
 - Should be avoided (e.g. working point optimization)

- Evaluate asymmetries in emittance/beta leading to 50% vertical blowup
- Derived coarse tolerances for machine tuning
 - Some seem hard to reach e.g. for W
 - Working point needs to be optimized

Case study at the SuperKEKB

- Beam-beam excites synchro-betatron resonances (collective [14], here single particle)
- Interplay with longitudinal wakefield enhances amplitude dependent incoherent x-z resonance
 - Impact on FCC-ee W [15]? (high Q_s)
- Successful Xsuite benchmarks against BBWS, BBSS, PyHEADTAIL
- Crab-waist imperfections

D. Zhou, talk @ this workshop

• Transverse impedance + beam-beam @ FCC-ee

R. Soos, talk @ this workshop

Summary

Work so far

- Xsuite beam-beam model developed:
 - Benchmarked against other codes GUINEA-PIG, BBWS, BBSS, PyHEADTAIL, COMBI, BBBREM, SAD, MAD-X
 - Tools are ready to combine beam-beam + lattice / IP + errors & tuning
 - Consolidated tolerances for asymmetries (bunch intensity, emittance, beta)

Lots of work still ahead...

- Errors & misalignments + beam-beam: needed for realistic estimates
- Parameter optimization of FCC-ee W
- IP tuning with multiturn tracking
- Beam-beam + transverse impedances

References

- [1] D. Shatilov, https://cds.cern.ch/record/2816655/files/9999999 30-41.pdf
- [2] D. Shatilov, FCC Week 2022 https://indico.cern.ch/event/1064327/contributions/4893272/
- [3] D. Schulte https://cds.cern.ch/record/331845/files/shulte.pdf
- [4] T. Pieloni, W. Herr https://accelconf.web.cern.ch/p05/PAPERS/TPAT078.PDF
- [5] K. Ohmi https://indico.cern.ch/event/438918/contributions/1085290/attachments/1147002/ 1644777/BenchBBcodes.pdf
- [6] K. Ohmi https://oraweb.cern.ch/pls/hhh/code_website.disp_code?code_name=BBSS
- [7] K. Ohmi https://indico.cern.ch/event/1398060/contributions/5876155/attachments/2831376/4947208/Beam-beamFCCee_ohmi.pdf
- [8] Y. Zhang https://journals.aps.org/prab/pdf/10.1103/PhysRevAccelBeams.23.104402
- [9] D. Shatilov http://cds.cern.ch/record/1120233/files/p65.pdf
- [10] J. Qiang https://amac.lbl.gov/~jiqiang/BeamBeam3D/
- [11] Xsuite 10.18429/JACoW-HB2023-TUA2I1
- [12] L. van Riesen-Haupt https://www.jacow.org/ipac2024/pdf/WEPR04.pdf
- [13] K. Oide, FCC-ee Collider Optics https://indico.cern.ch/event/1202105/contributions/5408583/attachments/2659051/4608141/FCCWeek Optics Oide 230606.pdf
- [14] K. Ohmi https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.119.134801

[15] K. Oide, FCC Week 2024, https://indico.cern.ch/event/1298458/contributions/5977859/attachments/2873388/5034194/Optics_Oide_240611.pdf

○ FCC

BACKUP

Simulation parameters

Slide #	11	12/upper	12/lower	13
Machine setup	FCC 4 IP baseline	FCC 4 IP baseline, W	FCC 4 IP baseline	SuperKEKB LER
Lattice model	nonlinear	linear	linear	linear
Beam-beam model	weak-strong	1 st part: quasi-strong-strong (f _{update} =100), 2 nd part: strong-strong	quasi-strong-strong (f _{update} =100)	strong- strong
# slices in beam- beam	100 (200 for Z)	100	100 (200 for Z)	100
# macroparticles	4e4	1e5	1e5 (1e6 for Z)	1e5
# turns	2x SR damping time	2e4	1e4 (Z, W), 5e3 (H, T)	2e4

Previous parameters (July 2023 almost for MTR)

FCC-ee collider parameters as of July 30, 2023.						
Beam energy	[GeV]	45.6	80	120	182.5	
Layout		PA31-3.0				
# of IPs		4				
Circumference [km]		90.658816				
Bend. radius of arc dipole [km]		10.021				
Energy loss / turn	[GeV]	0.0391	0.374	1.88	10.29	
SR power / beam [MW]		50				
Beam current	[mA]	1279	137	26.7	4.9	
Colliding bunches / beam		11200	1780	380	56	
Colliding bunch population	$[10^{11}]$	2.14	1.45	1.32	1.64	
Hor. emittance at collision ε_x	[nm]	0.71	2.17	0.67	1.57	
Ver. emittance at collision ε_y	[pm]	1.9	2.2	1.0	1.6	
Lattice ver. emittance $\varepsilon_{y,\text{lattice}}$	[pm]	0.85	1.25	0.65	1.1	
Arc cell		Long 90/90		90/90		
Momentum compaction α_p [10 ⁻⁶]		28.6		7.4		
Arc sext families		75		146		
$\beta^*_{x/y}$	[mm]	110 / 0.7	220 / 1	240 / 1	800 / 1.5	
Transverse tunes $Q_{x/y}$		218.158 / 222.200	218.186 / 222.220	398.192 / 398.360	398.148 / 398.216	
Chromaticities $Q'_{x/y}$		0 / +5	0 / +2	0 / 0	0/0	
Energy spread (SR/BS) σ_{δ}	[%]	0.039 / 0.109	0.070 / 0.109	0.103 / 0.152	0.159 / 0.201	
Bunch length (SR/BS) σ_z	[mm]	5.60 / 15.5	3.46 / 5.09	3.40 / 5.09	1.85 / 2.33	
RF voltage 400/800 MHz	[GV]	0.079 / 0	1.00 / 0	2.08 / 0	2.1 / 9.38	
Harm. number for 400 MHz		121200				
RF frequency (400 MHz)	MHz	400.786684				
Synchrotron tune Q_s		0.0288	0.081	0.032	0.089	
Long. damping time	[turns]	1158	219	64	18.3	
RF acceptance	[%]	1.05	1.15	1.8	3.1	
Energy acceptance (DA)	[%]	± 1.0	± 1.0	± 1.6	-2.8/+2.5	
Beam crossing angle at IP [mrad]		± 15				
Crab waist ratio	[%]	70	55	50	40	
Beam-beam ξ_x/ξ_y^a		0.0022 / 0.097	0.013 / 0.128	0.010 / 0.088	0.066 / 0.144	
Piwinski angle $(\theta_x \sigma_{z,BS}) / \sigma_x^*$		26.4	3.7	5.4	0.99	
Lifetime $(q + BS + lattice)$	[sec]	10000	4000	3500	3000	
Lifetime $(lum)^b$	[sec]	1330	970	660	650	
Luminosity / IP	$[10^{34}/cm^2s]$	141	20	6.3	1.38	
Luminosity / IP (CDR)	$[10^{34}/cm^2s]$	230	28	8.5	1.8	

4

^aincl. hourglass.

^bonly the energy acceptance is taken into account for the cross section

Top-up injection

- Maintains luminosity levels & compensates for decreased beam lifetime
- Single booster feeds both beams

Longitudinal top-up simulated with Xsuite

- Perturbed bunch init. with 95% intensity
- Track till equilibrium & top-up

- Luminosity lower than in symmetric case (L_0)
 - This reduction cannot be avoided but currently not taken into account in design

lower due to asymmetric 0.85 setup

20000

lower due to

setup

15000

10000

Turns [1]

5000

1.02

*×^{1.00}

b 0.98

BS.

 $[\sigma_{z}]$

1.3

11 đ

1.0

0.95N₀

5000

10000

Turns [1]

15000

200000

Simplified tracking simulations with Xsuite

- First studies with 2 IP baseline from CDR
- Recent studies with 4 IP design
- Xsuite tracking setup:
 - 1 IP + tracking over arc superperiod with linear transfer matrix
 - Arc split into 3 segments
 - 2 crab sextupoles between arc segments (β_x =3 m, β_y =500 m)
 - Each iteration begins in front of the right sextupole
 - Observation point for coordinates
 - Synchrotron radiation (damping+noise) in arc, beamstrahlung+bhabha scattering in beam-beam element

Dynamic aperture with beam-beam

Dynamic aperture test grid

Benchmarking radiation in Xsuite

Several benchmarks

- ✓ Synchrotron radiation with MAD-X and SAD
- ✓ Optics, orbit, energy with and without errors
- Quantum excitation and damping
- Equilibrium emittance w/ vertical wiggler
- ✓ Tracking and matrix methods
- ✓ Bhabha + beamstrahlung lifetimes
- ✓ Issue with synchrotron radiation loss rate resolved

Beam lifetime

 Bhabha lifetimes simulated & compare well to reference estimates (GUINEA-PIG + BBBREM)

Small angle Bhabha scattering

Dominated by t-channel (scattering) process

Main limitation of FCC-ee beam lifetime (alongside beamstrahlung)

Bhabha lifetimes

$$\frac{1}{\tau} = \frac{1}{N_b} \frac{dN_b}{dt} = \frac{1}{N_b} \sigma_{Bhabha} L_{inst} \cdot N_{IP} = \frac{1}{N_b} R_b \cdot f_{rev} \cdot N_{IP}$$

- T: Bhabha lifetime [s]
- N_b: bunch intensity [1]
- σ_{Bhabha}: Bhabha cross section [m^2]
- N_{IP}: number of lps [1]
- L_{inst}=L*f_{rev}: instantaneous lumi of 1 bunch crossing [m^-2 s^-1]
- L: integrated lumi of a single collision (luminosity per bunch crossing) [m^-2]
- f_{rev}: revolution frequency [s^-1]
- $R_b = \sigma_{Bhabha}^*L$: number of emitted Bhabha photons with E above mom. acceptance [1]

Beam-beam in Xsuite

1. Lorentz transform into head-on frame

2. Longitudinal slicing

3. Beam-beam kick in soft-Gaussian approximation [4]

$$\begin{split} \Delta y' + i\Delta x' &= \frac{Nr_0\sqrt{2\pi}}{\gamma\sqrt{\sigma_x^2 - \sigma_y^2}} \left(\mathbf{w} \left[\frac{x + iy}{\sqrt{2(\sigma_x^2 - \sigma_y^2)}} \right] - \exp\left[-\frac{x^2}{2\sigma_x^2} - \frac{y^2}{2\sigma_y^2} \right] \cdot \mathbf{w} \left[\frac{x\frac{\sigma_y}{\sigma_x} + y\frac{\sigma_x}{\sigma_y}}{\sqrt{2(\sigma_x^2 - \sigma_y^2)}} \right] \right) \\ x' \leftarrow x' + \Delta x' \\ y' \leftarrow y' + \Delta y' \\ \end{split} \qquad \mathbf{w}[t] &= \exp\left[-t^2 \right] \left(1 + \frac{2\mathbf{i}}{\sqrt{\pi}} \int_0^t \exp\left[u^2 \right] \mathrm{d}u \right) \end{split}$$

○FCC 02 September 2024 | BB24

Flip-flop

- Flip-flop instability (1D) observed in other colliders (VEPP-2000)
- For FCC-ee: 3D flip-flop direct consequence of beamstrahlung, triggered by an initial asymmetry in bunch intensity

· 3D flip-flop

- Inflation of one bunch
- ch beam loss
- Above a threshold ξ_0 longitudinal blowup drives transverse diffusion
- Relevant for FCC-ee top-up injection

FCC 02 September 2024 | BB24

Workflow for emittance scan – everything in Xsuite

Prepare Xtrack line once:

load MAD-X sequence		
add wigglers		
convert to Xtrack line		
build + twiss 4D		
slice sequence		
build + twiss 4D		
save Xtrack line		

Loop over a range of ε_v values:

load Xtrack line	:		
add observation point @ RF	add beam-beam element (optional)		
build + twiss 4D	build		
twiss 6D mean synrad + tapering	set quantum synrad		
match ε_v	track		
, twiss 6D mean synrad + tapering	repeat with next $\boldsymbol{\epsilon}_{y}$		
_			