ICFA mini workshop: Beam-Beam Effects in Circular Colliders BB24 EPFL, Lausanne, Switzerland, Sep. 3, 2024

Demin Zhou

Accelerator theory group, Accelerator laboratory, KEK

Outline

- Introduction
- Theory of beam-beam resonances for CW colliders
- Imperfections in the crab-waist transform
- Summary

Introduction

- Model of a CW collider ring
	- In terms of Lie maps, the one-turn map is

 $M = e^{-:H_R}e^{-:H_{S1} \cdot e^{-H_A \cdot e^{-H_A \cdot e^{-H_{S2} \cdot e^{-H_L \cdot e^{-H_b \cdot e^{-H$

- Sequence of elements:
	- H_R , H_L : right and left side of IR
	- H_{S1} , H_{S2} : first and second CW sextupole
	- H_A : arc and straight sections
	- H_{bb} : beam-beam kick at IP
- The one-turn map of an ideal CW collider ring is

- $χ=1$ for full CW strength
- H_0 is determined only by $\beta^*_{x,y,z}$ and $\nu_{x,y,z}$
- The imperfections in the CW transform are embedded within the Hamiltonians being analyzed.

$$
M_i = e^{-:H_0:}e^{-:H_{cw}:}e^{-:H_{bb}:}e^{:H_{cw}:} \qquad H_{cw} = \frac{\chi}{2\tan(2\theta_c)}
$$

Introduction

- An ideal CW collider
	- Beam distribution around the IP

- Features:
	- Flat beam: $R_0 = \sigma_y^* / \sigma_x^* \ll 1$
	- Large Piwinski angle: $\phi_0 = \sigma_z \tan \theta_c / \sigma_x^* \gg 1$
	- Small β^*_y : $\zeta_x = \sigma^*_x/(\beta^*_y \tan(2\theta_c)) \lesssim 0.5$
	- Working point per IP: fractional (ν_x, ν_y) around (0.5, 0.5)
- Important beam-beam resonances
	- Horizontal synchrobetatron resonances: $2\nu_x 2k\nu_z = N$, $k = 1, 2, 3, \dots$
	- Betatron resonance: $\nu_x + 2n\nu_y = N$, $n = \pm 1, \pm 2,...$
	- Vertical synchrobetatron resonances: , 2*ν^y* − 2*kν^z* = *N k* = 1,2,3,…
	- 3D synchrobetatron resonances: *mxν^x* + *myν^y* + *mzν^z* = *N*

$$
\rho(\vec{r};s) = \frac{e^{-\frac{x^2}{2\sigma_x^2} - \frac{y^2}{2\sigma_y^2(s)} - \frac{z^2}{2\sigma_z^2}}}{(2\pi)^{3/2} \sigma_x^* \sigma_y(s) \sigma_z} \qquad \sigma_y(s) = \sigma^* \sqrt{1 + \frac{1}{\beta_y^* 2} \left(z + s + \frac{\chi x}{\tan(2\theta_c)} \right)^2}
$$

- N.S. Dikansky and D.V. Pestrikov, NIM-A 600 (2009) 538-544
	- Beam-beam potential

• Particle motion in the weak beam

• Hourglass effect and CW transform

• Beam-beam resonances

$$
V_{bb} = -\frac{N_0 r_e R_0}{\pi \gamma} \iiint_{-\infty}^{\infty} d\tau dt_x dt_y \frac{\lambda(\tau)}{R_0^2 t_x^2 + t_y^2} e^{it_x(\tau + q_x + \phi_0 q_z) - it_y q_y} e^{-\frac{t_x^2}{2} - \frac{t_y^2}{2} (1 + \zeta_{x0}^2 (\tau + \phi_0 q_z)^2)}
$$

$$
x = \sqrt{2\beta_x^* J_x} \cos \psi_x, \quad y(s') = \sqrt{2\beta_y(s')} J_y \cos \phi_y(s'), \quad z = \sqrt{2\beta_z J_z} \cos \psi_z
$$

$$
\beta_y(s') = \beta_y^* \left(1 + \frac{1}{\beta_y^{*2}} \left(s' + \frac{\chi x}{\tan(2\theta_c)} \right)^2 \right), \quad \phi_y(s') = \psi_y + \arctan\left(\frac{s' + \frac{\chi x}{\tan(2\theta_c)}}{\beta_y^*} \right)
$$

$$
V_{bb}\delta(\theta) = \sum_{\vec{m},n} V_{m_x m_y m_z} e^{i(m_x \psi_x + m_y \psi_y + m_z \psi_z - n\theta)}, \quad V_{m_x m_y m_z} = \frac{1}{(2\pi)^4} \iiint_0^{2\pi} d\psi_x d\psi_y d\psi_z V_{bb} e^{-i(m_x \psi_x + m_y \psi_y + m_z \psi_z)}
$$

$$
\lambda(\tau) = \frac{1}{\sqrt{2\pi}\phi_0}e^{-\frac{\tau^2}{2\phi_0^2}}
$$

$$
\zeta_{x0} = \sigma_{x0}^*/(\beta_{y0}^* \tan(2\theta_c))
$$

- Horizontal synchrobetatron resonances
	- Amplitude

- Findings
	- Excited resonances: $m_x + m_z =$ even
	- **- CW does not suppress horizontal resonances**
	- There is only one way to reduce the strength: Increasing ϕ_0

$$
V_{m_x 0 m_z} \approx -\frac{N_0 r_e}{\pi \gamma} i^{m_x + m_z} F_{m_x m_z} (A_x, A_z)
$$

$$
F_{m_x m_z} (A_x, A_z) = \int_0^\infty \frac{dk}{k} e^{-\frac{k^2}{2}} J_{m_x} \left(\frac{k A_x}{\sqrt{\phi_0^2 + 1}} \right) J_{m_z} \left(\frac{k \phi_0 A_z}{\sqrt{\phi_0^2 + 1}} \right)
$$

• Approximation for $\phi_0 \gg 1$

$$
F_{2m_z}^a \approx \frac{\sqrt{2\pi}}{32\phi_0^2} A_x^2 A_z e^{-\frac{A_z^2}{4}} \left[I_{\frac{m_z-1}{2}} \left(\frac{A_z^2}{4} \right) - I_{\frac{m_z+1}{2}} \left(\frac{A_z^2}{4} \right) \right]
$$

- Resonances with $m_{y} = 2q > 0$
	- Amplitude

- Findings
	- $V_{m_{x}m_{y}m_{z}}$ is linearly proportional to A_{y} when $A_{y} \gg 1$

7

$$
V_{m_x m_y m_z} = -\frac{N_0 r_e R_0}{\pi \gamma (2\pi)^3} \iint_0^{2\pi} d\psi_x d\psi_z e^{-i(m_x \psi_x + m_z \psi_z)} \sqrt{2\pi} \int_{-\infty}^{\infty} dr \sqrt{1 + \zeta_x^2 (r + (\chi - 1)q_x)^2} \lambda(r - q_x - \phi_0 q_z) e^{-\frac{r^2}{2}} \left(\frac{1 + i\zeta_x (r + (\chi - 1)q_x)}{1 - i\zeta_x (r + (\chi - 1)q_x)} \right)^q F_q(A_y)
$$

$$
F_q(A_y) \approx \frac{(-1)^q}{4q^2 - 1} \sqrt{\frac{\pi}{2}} e^{-\frac{A_y^2}{4}} \left[(2 + 4q + A_y^2) I_q \left(\frac{A_y^2}{4} \right) + A_y^2 I_{q+1} \left(\frac{A_y^2}{4q^2 - 1} \right) \right]
$$

$$
F_q(A_y) \approx (-1)^q \frac{2A_y}{4q^2 - 1} \text{ for } A_y \gg 1
$$

$$
V_{m_x m_y m_z} \approx -\frac{N_0 r_e R_0}{\pi \gamma \phi_0} F_q(A_y) \overline{G}_{m_x m_y m_z}(A_x, A_z)
$$

- Betatron resonances $V_{m_{\chi}m_{\chi}0}$ with $m_{\chi}=2q>0$
	- Findings
		- With CW, resonances with $m_{\chi}=1,\!3,\!5,...$ will not be excited.
		- Resonances with $m_x = 2,4,6,...$ will be significantly suppressed, but have a finite amplitude
		- **- The power of CW is to suppress betatron resonances** $V_{m_xm_y0}$

Dashed lines: with CW

$$
H_{cw} = \frac{\chi}{2 \tan(2\theta_c)} x p_y^2
$$

- Findings
	- Resonances with $m_{\textnormal{y}} = 2,\!4,\!6,...$ and $m_{\textnormal{z}} = 2,\!4,\!6,...$ can be excited.
	- CW has some suppressive effect on particles with large horizontal amplitudes, but it is not effective in fully suppressing these resonances.

Conditions for the plot: $A_{\text{x}} = 5$, $\zeta_{\text{x}} = 0.5$, $\phi_{0} = 10$ Solid lines: without CW Dashed lines: with CW

Theory of beam-beam resonances for ideal CW colliders

• Vertical synchrobetatron resonances $V_{0m_ym_z}$ with

 $m_{\rm y} = 2q > 0$

- 3D synchrobetatron resonances $V_{m_{x}m_{y}m_{z}}$ with
	- - Betatron resonance satellites can be excited
		-
		-

- Theory applied to interpret weak-strong beam-beam simulations - Luminosity and beam sizes can be correlated with beam-beam resonances
	- $m_x \nu_x + m_y \nu_y + m_z \nu_z = N$
	- Consider the tunes as functions of many variables $\nu_{x\pm,y\pm,z\pm}(I_{b\pm},I_{b\mp},J_{x\pm,y\pm,z\pm},\beta^*_{x\pm,y\pm},\beta^*_{x\mp,y\mp},\epsilon_{x\mp,y\mp},\dots)$ due to multiple beam physics aspects.

[1] D. Zhou et al., **PRAB [26, 071001](https://journals.aps.org/prab/abstract/10.1103/PhysRevAccelBeams.26.071001) (2023)**.

Theory of beam-beam resonances for ideal CW colliders

- Categorization of CW imperfections
	- H_{bb}
		- Dynamic beta and emittance
		- Synchrobetatron resonances
	- H_R , H_L
		- Phase advances between IP and CW sextupoles
		- IR nonlinearities
	- H_{S1} , H_{S2}
		- Residual nonlinear terms in CW transform
		- Orbit offset at CW sextupoles
		- Dispersions at CW sextupoles
	- H_0
		- Linear IP aberrations (beta-beat, alpha, dispersion, couplings, etc.)
		- Chromatic IP aberrations
		- Impedance effects
- The impact of various CW imperfections can be analyzed through **theoretical approaches, simulations, and experimental studies.**

 $M = e^{-:H_R}e^{-:H_{S1} \cdot e^{-H_A \cdot e^{-H_A \cdot e^{-H_{S2} \cdot e^{-H_L \cdot e^{-H_b \cdot e^{-H$

$$
M_i = e^{-:H_0}e^{-:H_{cw}e^{-:H_{bb}e}H_{cw}H_{cw}} = \frac{\chi}{2\tan(2\theta_c)}
$$

$$
K_2 = \pm \frac{1}{\tan(2\theta_c)} \frac{1}{\beta_{y,crab} \beta_y^*} \sqrt{\frac{\beta_x^*}{\beta_{x,crab}}}
$$

13

Imperfections in the crab-waist transform

 10.2 0.9 $\mathbb{F}_{0.7}^{0.8}$ 0.6

Scan of IP couplings for SuperKEKB w/ and w/o CW (D. Zhou et al., IPAC'10)

- Nonlinear IP aberrations
	- Chromatic couplings were found important in KEKB (D. Zhou et al., PRST-AB 13, 021001 (2010)) and SuperKEKB
	- IP knobs are necessary to suppress these chromatic IP aberrations
	- Through simulations, tolerances can be defined in design stages of CW colliders

Table 3: Tolerances for the linear and chromatic X-Y couplings at the IP of the SuperKEKB LER, assuming a rate of 20% luminosity degradation.

Scan of $dR_A^*/d\delta$ for KEKB (D. Zhou et al., PRAST-AB (2010))

Scan of $dR_4^*/d\delta$ for SuperKEKB (D. Zhou et al., IPAC'10)

14

Imperfections in the crab-waist transform

- Nonlinear IR at SuperKEKB
	- Extremely small $\beta^\ast_\text{y}\to$ Nonlinear effects from kinematic term of IP drift and fringe fields of final focus (FF) quadrupoles [1] \to Fundamental limit on dynamic aperture and lifetime [1,2,3] \to Poor injection efficiency [\[4\]](https://kds.kek.jp/category/2282/) and high detector background [5].
	- and lattice nonlinearity $[7,8] \rightarrow$ Imperfect CW due to nontransparent IR [2].

[6] M. Masuzawa, [IPAC'22](https://epaper.kek.jp/ipac2022/talks/tuozsp2_talk.pdf). [7] D. Zhou et al., ["Beam Dynamics Issues in the SuperKEKB](https://research.kek.jp/people/dmzhou/FCC/Overview/icfa_Newsletter67.pdf)". [8] K. Hirosawa et al., [J. Phys.: Conf. Ser. 1067 062004 \(2018\).](https://iopscience.iop.org/article/10.1088/1742-6596/1067/6/062004/meta)

- Overlap of solenoid and FF quadrupoles, offsets of FF quadrupoles, etc. \rightarrow Vertical emittance growth (single-beam) due to local linear and chromatic couplings [6] \to Vertical emittance growth (two-beam) from interplay of beam-beam

[1] K. Oide and H. Koiso, Phys. Rev. E 47, 2010 (1993). [2] [SuperKEKB TDR](https://kds.kek.jp/event/15914/). [3] Y. Suetsugu, et al., PRAB 26, 013201 (2023). [5] A. Natochii, et al., "[Beam background expectations for Belle II at SuperKEKB](https://arxiv.org/abs/2203.05731)".

- Chromatic effects at CEPC [1]
	- Macroparticle tracking by **APES-T** with full lattice and beam-beam
	- Chromatic effects were identified as the main sources of luminosity loss

Z. Li, this workshop

$$
\sigma_y^* \approx \sigma_{y0}^* \sqrt{1 + \frac{\chi^2 \epsilon_x}{\beta_{y0}^* \tan^2(2\theta_c)}} + (b_2 + a_1^2) \sigma_p^2
$$

$$
\beta_y^*(p_z) = \beta_{y0}^*(1 + b_1p_z + b_2p_z^2) \qquad \alpha_y^*(p_z) = a_0 + a_1p_z + a_2p_z^2
$$

[1] Z. Li et al., NIM-A 1064 (2024): 169386.

- **a** Strong coherent X-Z instability around resonance $2\nu_x 2k\nu_s$ (J_z) = N and weak blowup due to synchrobetatron (SB) resonances [1]
-

[1] D. Zhou et al., **PRAB [26, 071001](https://journals.aps.org/prab/abstract/10.1103/PhysRevAccelBeams.26.071001) (2023).** [2] K. Ohmi et al., **[PRL 119, 134801](https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.119.134801)**.

Imperfections in the crab-waist transform

- Impedance effects
	- Horizontal SBRs cause blowup in ϵ_x , altered by impedance effects [1, 2].
	- Resonance condition:

P. Kicsiny, this workshop

$$
m_x \nu_x + m_z \nu_z = N \qquad \nu_x = \nu_{x0} + \Delta \nu_z^{bb} (J_x, 0, J_z)
$$

$$
\nu_z = \nu_{z0} + \Delta \nu_z^{bb} (J_x, 0, J_z) + \Delta \nu_z^{wake} (J_z)
$$

$$
F_{m_x m_z} (A_x, A_z) = \int_0^\infty \frac{dk}{k} e^{-\frac{k^2}{2}} J_{m_x} \left(\frac{k A_x}{\sqrt{\phi_0^2 + 1}} \right) J_{m_z} \left(\frac{k \phi_0 A_z}{\sqrt{\phi_0^2 + 1}} \right)
$$

[1] D. Zhou et al., **PRAB [26, 071001](https://journals.aps.org/prab/abstract/10.1103/PhysRevAccelBeams.26.071001) (2023).** [2] P. Kicsiny et al., paper under preparation.

$$
\begin{bmatrix}\n0.006 \\
0.004 \\
0.002\n\end{bmatrix}
$$
\n3 4 5 0.000

Summary

- The effectiveness of CW in colliders may be diminished by various imperfections.
- These CW imperfections can be systematically studied using a framework that includes complexity at each stage.

theoretical analysis, simulations, and experimental investigations, allowing for controlled

$$
-H_1 e^{-H_2}e^{-H_3}e^{-H_3}...e^{-H_N} = M = e^{f_2}e^{f_3}e^{f_4}...e^{f_{N_0}}
$$

Beam-beam $+$ One-turn matrix $+$ + ideal CW map $+$ Perturbation map $+$ Impedance Beam-beam + Full lattice + Impedance + Space charge + … **Talks by K. Ohmi, P. Kicsiny, Z. Li, et al., this workshop**

Beam-beam + One-turn matrix + ideal CW map + Perturbation map

This plot is inspired by E. Forest's illustration of beam dynamics

Acknowledgements

• I thank K. Ohmi, Z. Li, P. Kicsiny, and X. Buffat for inspiring discussions on beam-beam issues in

crab-waist colliders.

20

Backup

Crab waist applied to SuperKEKB

- SuperKEKB 2021b run $\beta^*_y = 1$ mm) with ideal crab waist
	- Tune scan using BBWS showed that 80% crab waist ratio in LER is effective in suppressing vertical blowup caused by beam-beam *resonances (mainly* $\nu_x \pm 4\nu_y + \alpha = N$ *).*

Crab waist applied to SuperKEKB

- SuperKEKB 2021b run $\beta^*_y = 1$ mm) with ideal crab waist
	- Tune scan using BBWS showed that 40% crab waist ratio (current operation condition) in HER is not enough for suppressing vertical blowup caused by beam-beam resonances (mainly $\nu_x \pm 4\nu_y + \alpha = N.$

- Beam-beam parameter
	- Findings
		- $\zeta_{\mathbf{x}}$ should be less than 0.5

$$
\xi_y = \frac{N_0 r_e \beta_y^*}{2\pi \gamma \sigma_{y0}^* (\overline{\sigma}_{x0} + \sigma_{y0}^*)} \Theta_y(\zeta_{x0}, \zeta_x)
$$

$$
\Theta_{y} = \frac{e^{u_0}}{2\sqrt{2\pi}\zeta_{x0}^3} \left[(2\zeta_{x0}^2 - \zeta_{x}^2) K_0 \left(u_0 \right) + \zeta_{x}^2 K_1 \left(u_0 \right) \right]
$$

$$
u_0 = 1/(4\zeta_{x0}^2) \qquad \zeta_{x0} = \sigma_{x0}^*/(\beta_{y0}^* \tan(2\theta_c))
$$

$$
\zeta_x = \sigma_{x0}^*/(\beta_y^* \tan(2\theta_c))
$$