

Swiss Accelerator Research and Technology

Beam-beam tools and Weak-Strong Studies for the Future Circular Collider

 École polytechnique fédérale de Lausanne

Work supported by the Swiss Accelerator Research and Technology (CHART)

3rd September 2024

EPFL Background: Simulation Tools

- Xsuite developments allow detailed simulation of FCC-ee
 - See talk by <u>G. ladarola on Thursday</u>
 - Simulations including:
 - Full description of lattice with errors and radiation
 - Beam-beam effects
 - Beam-beam module written by <u>P. Kicsiny, talk yesterday</u>
 - Used for FCC studies with full lattice description without errors e.g. for dynamic aperture, emittance blow up, lifetimes
- EPFL FCC software framework
 - Aim to enable comprehensive simulations with multiple effects
 - Understand and study their interplay
 - Introduce them one at a time

EPFL Background : FCC Tuning Studies

- FCC tuning studies[1]:
 - Simulations with different kinds of lattice errors
 - Sensitivities
 - Corrections:
 - Optics and orbit corrections
 - Tuning knobs to control IP optics functions
 - Very limited studies with beam-beam effects
- Significant achievements with promising results
 - Towards acceptable dynamic aperture and optics with realistic errors
 - Need to understand impact of beam-beam effects
- Studies shown today:
 - First studies on interplay of lattice errors and (WS) beam-beam
 - Beam-beam perturbation and luminosity with IP parameter scan

Beam-beam and Lattice

Towards comprehensive dynamic aperture studies

Errors

- First dynamic aperture studies including:
 - Beam-beam

Target

- Full lattice with radiation
- Lattice imperfections
- Examining one imperfection at a time:
 - Excitation of different multipoles
 - Different alignment errors
- Studies done to
 - Understand how different types of imperfections interact with beambeam and affect dynamic aperture
 - Aim to pinpoint behaviour and target corrections
- First iterations focuses on transverse dynamic aperture

EPFL

- Load FCC-ee tt lattice without perturbations from MADX
- Perturb lattice in MADX and import to Xsuite
- Taper lattice adjust local magnet strength to match local beam energy
- Compute 6D Twiss in Xsuite
- Install (WS) beam-beam elements in Xsuite
 - Two options: **B2 same/mirrored parameters** as B1, **B2 unperturbed**
- Compute DA metric Largest Ellipse
- Repeat without beam-beam

Leon van Riesen-Haup

EPFL Dynamic Aperture: Largest Ellipse

- Define dynamic aperture as largest possible ellipse (in X,Y plane) that only contains stable particles. Developed with A. Piveteau
- Allows get quantifiable dynamic aperture to scan parameters

EPFL Controlled Excitation of Multipoles

- Install multipole in "RF-insertions" of tt lattice
 - Separate studies:
 - In one insertion, in all insertions
 - B2 mirror B1, B2 unperturbed
- Separately excite dipole, quadrupole, sextupole and octupole fields
 - **Gradually increase** multipole strengths (arbitrary units)
 - Until dynamic aperture drops to zero without beam-beam
 - Repeat with beam-beam
 - Repeat with their skew equivalents

EPFL

Findings

- Beam-beam shown to have a very small impact on transverse dynamic aperture
 - Largely follows the same trends irrespective of beam-beam element installed
 - True for single perturbation and multiple (rotationally symmetric) perturbations
- Symmetric and unperturbed B2 both have a very small impact
 - No major difference in behaviour

Example: plot for effect on DA with multiple octupoles

- Test impact of alignment errors on dynamic aperture
 - Focus on vertical alignment errors of:
 - Sextupoles introduction of coupling and optics beating
 - Quadrupoles same as sextupoles + introduction of orbit + dispersion effects
- Simulation set up similar as for multipoles
 - Tapering and full radiation
 - B2 produced symmetric to B1
 - Ensure beams actually interact (no orbit offsets)
- Random errors with increasing standard deviation
 - Applied to quadrupoles or sextupoles
 - 20 identical errors seeds with and without beam-beam
 - Compute average and standard deviation of dynamic aperture for each error size
 - Compare individual seeds too

EPFL Results

11

Leon van Riesen-Haupt

- Very small impact of beam-beam element on average dynamic aperture
- Most error seeds have very similar dynamic aperture in both cases
 - Shown next to each other in plot
 - Few cases with differences
 - Interesting to study these behaviour of these seeds
 - Need to understand how beam-beam interacts with these errors

EPFL Realistic Errors and Correction

- Lattice provided by Yi Wu
 - Z-lattice
 - 50 μm alignment errors in arcs
 - Orbit corrections interleaved with global tune correction
- Dynamic aperture obtained
 - Tracked with tapering and radiation in arcs for 2500 turns
 - with and without beam-beam elements installed
 - (B1 = B2 parameters)

EPFL Conclusions on Errors and Beam-beam

- Observe that WS beam-beam perturbations have small impact on transverse dynamic aperture
 - Magnetic errors
 - Alignment errors including realistic corrections
- Simulations consideration average radiation damping and full lattice
- Promising first results indicating low impact after optics tuning
- To get a fuller pictures also consider:
 - Longitudinal dynamic aperture
 - Quantized radiation: synchrotron, beamstrahlung and bha-bha scattering
 - lifetime work towards making these simulations reliable
 - Study correlating dynamic aperture with lifetime

IP Parameters

EPFL Scanning IP Knobs

- FCC-ee tuning knobs exist to control the IP parameters
 - Including β at waist and waist location
- Xsuite can be used to study machine behaviour to when we scan these knobs in the presence of (WS) beam-beam element
 - Understand impact of optics perturbations in IP
 - Especially critical for beam-beam
 - Compute luminosity to see how IP perturbations could be measured
- Evaluate availability and utility of knobs e.g. as luminosity handle
 - Also understand impact on other parameters e.g. emittance work done by A. Piveteau

DA with IP Parameter Scan

- Change waist location in horizontal and vertical planes of tt lattice using knobs
 - In all IPs simultaneously
- Radiating lattice and install beam-beam elements in Xsuite
 - B2 unperturbed
- Scan each setting and track for 200 turns (tt) and establish ellipse dynamic aperture
- Repeat without beam-beam

DA with IP Parameter Scan

- Change waist location in horizontal and vertical planes of tt lattice using knobs
 - In all IPs simultaneously
- Radiating lattice and install beam-beam elements in Xsuite
 - B2 unperturbed
- Scan each setting and track for 200 turns (tt) and establish ellipse dynamic aperture
- Repeat without beam-beam
- Repeat for β_w
- Again, very small impact on dynamic aperture

EPFL Luminosity Scans

- Change waist location in horizontal and vertical planes of tt lattice using knobs
 - In single IP
- Radiating lattice in Xsuite
- Install single beam-beam element in modified IP
- Luminosity computed using Xsuite beam-beam
 - Compute luminosity over 300 turns with 100,000 macro particles
- Behavior as expected
 - Future studies with (optics) errors
 - Use luminosity to tune optics

EPFL Conclusions

- Xsuite allows for FCC-ee studies with full lattice description, radiation and beam-beam
 - Powerful tool to realistically study FCC-ee in full detail
- First studies on the impact of beam-beam on dynamic aperture with errors
 - Magnetic errors and alignments errors
 - Promising first results towards demonstrating feasibility
 - Limited to transverse dynamic aperture more studies to follow
- More focused studies on IP parameters
 - Impact of knobs on dynamic aperture with beam-beam
 - Beam-beam module for luminosity scans
 - Towards understanding availability and utility of knobs

Thank you!

Backup slides

EPFL Dynamic Aperture: Largest Ellipse

- Scanning parameters requires a systematic approach to quantify dynamic aperture
- Define dynamic aperture as largest possible ellipse (in X,Y plane) that only contains stable particles. Developed with A. Piveteau
- Algorithm as followed:
 - Generate particles on grid in **units of** σ_x and σ_y
 - Track for ~two lifetimes
 - Scan all possible ellipses with **axes** $a = [0, \sigma_{x_{MAX}}], b = [0, \sigma_{y_{MAX}}]$
 - Using same granularity as grid
 - Accept ellipse if fully in stable region:
 - If all particles fulfil: survived all turns $\underline{OR}\left(\frac{\sigma_x}{a}\right)^2 + \left(\frac{\sigma_y}{b}\right)^2 > 1$
 - DA defined as maximum a × b accepted ellipse

EPFL Dipole (Kicker)

EPFL Skew Dipole (Kicker)

EPFL Quadrupole

EPFL Skew Quadrupole

EPFL Sextupole

EPFL Skew Sextupole

EPFL Octupole

EPFL Skew Octupole

