Brookhaven National Laboratory

Beam-Beam Simulation Models and Numerical Noises for Flat Beam Collisions in the EIC

Yun Luo

Electron-Ion Collider Directorate Brookhaven National Laboratory

BB24, Lausanne, Sept. 2-5, 2024

Numerical Simulation Models for the EIC

Both bunches are represented by ~ a million macro-particles. Subject to numerical noises.

Weak-Strong simulation model

Strong bunch is rigid while weak bunch is represented by macro-particles. Not consistent.

Electron-Ion Collider

Dynamic aperture calculation

 Importance of long-term proton stability is crucial for the EIC beambeam interaction simulation stuudies.

Strong-Strong Model (Particle-In-Cell, Poisson Solver)

Electron-Ion Collider We can see that PIC Poisson solver is exact if charges are really on grids. Numerical errors happen in charge deposition and BB EM filed calculation (interpolation). ³

Flatness Scan Study: Strong-Strong Model

Flatness is defined as σ_v^* / σ_x^* at IP

Calculated with BBSS

flatness	ID	emitx_p nm	emity_p nm	betx*_p cm	bety*_p cm	emitx_e nm	emity_e nm	betx*_e cm	bety*_e cm		lumi 1e34	proton Hsize growth rate	proton Vsize growth rate
0.06	88	11.9	0.7	90	5.4	20	0.64	63	4.0		1.2	1000%/h	2400%/h
0.08	86	11.7	0.9	90	7.2	20	0.90	65	5.7		0.98	900%/h	1700%/h
0.09	104	11.3	1.0	90	8.1	20	1.1	62	6.0	Í	0.91	800%/h	1500%/h
0.10	78	11.0	1.1	90	9.0	20	1.4	59	6.9	Í	0.83	800%/h	1100%/h
0.11	54	10.9	1.2	90	10.0	20	1.6	59	7.7	i	0.78	1100%/h	1100%/h
0.12	44	10.9	1.3	90	10.9	20	1.7	60	8.4	i	0.71	900%/h	1000%/h
0.14	99	9.9	1.4	90	12.6	20	1.9	60	9.6	İ	0.66	900%/h	1200%/h
0.09	118	11.3	1.0	80	7.2	20	1.1	55	5.6		1.0	700%/h	1400%/h

In strong-strong simulation, half million macro-particles used and tracked to 50k turns. We linearly fit beam sizes between 25k to 50k turns (5-10 electron SR damping periods) to get a rough growth rate in unit of %/hour (extrapolated from 25k turns).

Growth Rates vs Flatness: Weak-Strong Model

Calculated with SimTrack

flatne	ss ID	proton beta*x,y [cm]	proton horizontal growth rate [%/hour]	proton vertical growth rate [%/hour]	
0.06 0.08 0.09 0.10 0.12 0.14	43-47 33-37 49-53 28-32 one seed 59-63	90/5.4 90/7.2 90/8.1 90/9.0 90/10.9 90/12.6	-0.68+/-1.10 -0.52+/-0.37 0.16+/-0.94 0.09+/-0.86 0.05 -1.2+/-2.5	14.57+/-7.1 2.6 +/-1.9 2.7+/-3.1 1.2+/-2.6 0.87 0.27+/-8.9	<
0.09	91-95	80/7.2	0.11+/-0.75	3.3+/-3.2	

In weak-strong simulation, electron bunch is rigid with design bunch sizes. 5 electron slices were used. Proton bunch represented by 10k macro-particles and tracked to 2 million turns. Several seeds of initial distribution are used to get a RMS error bar in calculated growth rates.

Frozen Model

- After the electron bunch reaches its quasi-equilibrium in a strong-strong simulation, we freeze
 the electron particle distribution and its space charge potential. Then we do weak-strong simulation
 with the electron potentials. In the code, potentials are averaged in 1000 turns.
- The proton vertical beam size growth rate from frozen model is between the strong-strong and weak-strong models. Frozen model gets ride of TBT variation but still carries errors in PIC Poisson solver.

Converging Studies

- Analytically, the numerical noise introduced artificial emittance growth rate in the strong-strong beam-beam simulation is inversely proportional to the number of macroparticles and proportional to the square of the beam-beam parameter, if beam-beam nonlinear effect is weak enough.
- In EIC strong-strong simulation, the growth rate goes down with increased macro-particles, transverse grids, and longitudinal slices. It also decreases with a smaller BB parameter and with a rounder transverse beam.

Electron-Ion Collider

D. Xu, et al, NAPAC2022, MOYD4. Y. Luo, et al, IPAC2022, WEPOPT038.

Turn-by-Turn Position and Beam Size Variation

- With typically 0.5 to 1 million macro-particles per bunch, the RMS variations of electron bunch center and transverse beam sizes are about 0.2-0.3% of their RMS beam sizes at IP.
- The impact of dipole moment of electron bunch can be eliminated by introducing virtual symmetric macro-particles in the PIC Poisson solver but growth rate doesn't go down much with this trick. Dipole motion is not the main source for emittance growth.
- TBT Beam size variation in simulation code is less than 0.2% of 1 sigma, which is not the main source for observed emittance growth either.

Macro-particles Contribute Most Emittance Growth

- To identify which macro-particles contribute most of proton emittance growth rates, we calculate RMS beam size growth rate of macro-particles as function of their initial longitudinal and transverse actions.
- We found that macro-particles in the transverse bunch core contribute most of the artificial emittance growth rate in the strong-strong beam-beam simulation.

Electron-Ion Collider

Y. Luo, et al, IPAC2022, WEPOPT036

Tests of PIC Based Poisson Solver

Relative normalized error (100%

- We estimate RMS variation of beam-beam kick from PIC Poisson solver for a given 4-D Gaussian distribution (with same RMS beam sizes) of 1000 particle distributions.
- We found that PIC based Poisson solver tends to have a larger variation (noise) in BB kick for particles in the bunch core, especially in the vertical plane for a flat beam.

This explained why we observed much faster beam size growth rates for macro-particles in the bunch core in the strong-strong simulation. Y. Luo, et al, IPAC2022, WEPOPT040.

Turn-by-Turn Variation in BB Kicks

We dug into a real strong-strong simulation with 0.5M * 0.5M macro-particles each bunch and PIC Poisson solver with 128 *128 grids. **1000 turns after equilibrium are used for variation calculation.**

RMS variation of charge density on 128*128 grids.

RMS variation of vertical BB kick on grids.

We observed larger variations in charge density and BB kick for central area of e-bunch.
 Also, variation of BB kick goes down slowly in the vertical direction for a flat bunch.

As a comparison: round beams in RHIC

Vertical BB kick variation

Extracted from a strong-strong BB simulation for RHIC.

- For a round beam, beam-beam variation has no much difference in horizontal and vertical beam-beam kicks.
- BB kick variation is overall smaller than flat beam.
- We also observed a larger BB force variation for bunch core particles.
- From physics, particles in bunch core is more stable than tail particles. We don't observe emittance growth rates from strong-strong simulation.

Recent Test with Analytical Density Deposition

- At each collision point, we first calculate centers and RMS size of macro-particles in one slice. Then
 we assign charge onto each grid analytically assuming Gaussian charge distribution. PIC solver and
 Ex, Ey calculation remain the same as normal strong-strong codes.
- By doing so, we notice that the proton emittance growth rate goes down to ~200%.hour, still far away
 from the weak-strong growth rat. This method doesn't exclude the TBT variations and electrical field
 interpolation.

Summary

- Numerical noise can be reduced by greatly increasing macro-particles, transverse grids, and longitudinal slices in PIC solver.
- Turn-by-turn variation of bunch motion can increase proton emittance growth rate but not the main contributor to the artificial emittance growth in strong-strong simulation.
- PIC solver generates a larger numerical variation in beam-beam force calculation for macroparticles in the bunch core.
- It is found with S-S simulation codes that macro-particles near bunch core contribute most of artificial emittance growth in strong-strong simulation.
- Strong-strong beam-beam simulation based on PIC is subject to large numerical noises, therefore it is not suitable for quantitative calculation for emittance growth rates.
- However, strong-strong BB simulation is suitable for design parameter optimization, tune scan, coherent BB motion, fast beam instabilities with wake fields, etc.