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● Many interplays in hadron colliders are covered during the workshop:

– Lattice resonances (E. Maclean, et al.)
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– Luminosity calibration (J. Wanczyk, et al)

– Wire compensation (G. Sterbini, et al., P. Belanger, et al.)
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Weak head-tail instability in the weak-strong regime
● Considering the other beam as a frozen lens, one may use the dispersion integrals 

derived for the Landau octupoles [Scott Berg96] (or with an RFQ [Schenk18] to 
take into account the Jz dependence with a Xing angle / hourglass effect):
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Landau octupoles [Buffat14]

→ Linear coupling driven by skew long-range 
beam-beam interactions [Wenninger18], possibly 
causing a loss of Landau damping [Carver18]

● Weak head-tail approx is often broken since 
often the beam-beam tune spread is much lager 
than the synchrotron tune

● Electron cloud instabilities were still observed in 
the LHC in collision, in spite of the large beam-
beam in collision tune spread [Romano18]
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Coherent beam-beam modes

● If we now consider the 
oscillation of the two beams 
consistently, we find new modes 
of oscillation [Yokoya90]
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● The interaction of coherent beam-beam mode with the transverse impedance can 
result in strong mode coupling instabilities
– Two main linear approaches: 

● [White14], based on the circulant matrix model (CMM) [Perevedentsev01]
● [Zhang23] based on the cross-wake approach (CWA) [Ohmi17]
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The circulant matrix model vs the cross-wake approach

CMM CWA

Dynamical variables Transverse 
coordinates of each 

cell

Transverse amplitude 
and phase of each 

mode

Radial decomposition Uniform discretisation

Azimuthal 
decompositon

Uniform discretisation Fourrier modes

Arc Rotation matrix + 
circulant matrix

Phase term

Beam-beam model Hirata-style Cross-wake
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The circulant matrix model vs the cross-wake approach

→Eigenvalue problem yielding the stability of the transverse modes of oscillation
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individual particles based 
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incoherent kick)

Hirata-style (without energy change)

● Build the interaction matrix by considering 
a succession of drift-kick-drift

Linearised beam-beam kick 
considering local orbit (crossing 
angle) and size (hourglass)

Cross-wake approach

● Integrate the incoherent kick over 
the transverse distribution

● Express it as a wake function

● Discretize the integral to write the 
interaction matrix
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If relevant, both these effects could 
be implemented in the CWA as well

π-mode / headtail -1

σ-mode / headtail +1
σ-mode / headtail -1

[Zhang23] Only BB

σ-mode shifted by 
the impedance
→ Lower TMCI

● Due to the signs of the beam-beam and impedance shifts, the 
coupling of the σ-mode is pushed away hadron machines
– The coupling of the π-mode appears at lower intensity

→ Similar issue in both machines, but not necessarily 
with the same mode

[White14]
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Mode coupling instability of colliding beams

● As predicted by the models, experimentally it 
could be verified in the LHC that:

– The transverse feedback is effective against 
this instability [White14]

damper 
on

damper 
off

8 / 24



3 Sept 2024 BB24

Mode coupling instability of colliding beams

● As predicted by the models, experimentally it 
could be verified in the LHC that:

– The transverse feedback is effective against 
this instability [White14]

– Lattice non-linearities (here: octupoles) can 
provide Landau damping for the π-mode, but 
quite inefficiently [Buffat19]

damper 
on

damper 
off

damper off
→  -500A

damper on
→ -50A

8 / 24



3 Sept 2024 BB24

Mode coupling instability of colliding beams

● As predicted by the models, experimentally it 
could be verified in the LHC that:

– The transverse feedback is effective against 
this instability [White14]

– Lattice non-linearities (here: octupoles) can 
provide Landau damping for the π-mode, but 
quite inefficiently [Buffat19]

damper 
on

damper 
off

damper off
→  -500A

damper on
→ -50A

8 / 24



3 Sept 2024 BB24

Mode coupling instability of colliding beams

● As predicted by the models, experimentally it 
could be verified in the LHC that:

– The transverse feedback is effective against 
this instability [White14]

– Lattice non-linearities (here: octupoles) can 
provide Landau damping for the π-mode, but 
quite inefficiently [Buffat19]

damper 
on

damper 
off

damper off
→  -500A

damper on
→ -50A

Q
0

Q
π

8 / 24



3 Sept 2024 BB24

Mode coupling instability at the HL-LHC

● Using [Alexahin02] nomenclature, 
(HL-)LHC is in the ‘intermediate Qs’ 
regime (ξ~5Qs), thus Landau 
damping by synchrotron sidebands is 
possible

→ Observed in simulation [Barraud19]
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● Using [Alexahin02] nomenclature, 
(HL-)LHC is in the ‘intermediate Qs’ 
regime (ξ~5Qs), thus Landau 
damping by synchrotron sidebands is 
possible

→ Observed in simulation [Barraud19]

● Coupling of higher order head-tail 
mode is also observed on in the 
linearized model

→ They are not damped by the 
existing ‘dipole’ damper

→ They are not observed in 
tracking, probably also due to 
Landau damping by sidebands

Linearised model
(CMM)

Tracking including 6D non-
linear BB force (COMBI)
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● The modeling of emittance growth due to decoherence feature strong 
similarites with Landau damping of beam instabilities:

– Detailed weak-strong model including a damper [Lebedev95], extended 
to crab cavity noise with RF curvature [Baudrenghien15] but with a 
limited validity (→ No coherent beam-beam mode)

– More involved models for strong-strong predicting a very different 
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instability → In this regime the weak-
strong and strong-strong models do not 
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– More involved models for strong-strong predicting a very different 
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● In modern colliders, a strong damper is 
required to stabilise the coupled bunch 
instability → In this regime the weak-
strong and strong-strong models do not 
differ significantly

→ This regime is most studied 
experimentally

● Potentially many other aspects break 
coherent modes [Alexahin02, Pieloni08], 
such that the weak-strong model may be 
sufficiently accurate even in a strong-
strong configuration
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Validation at the SPS
[Triantafyllou24]

● The SPS looked like a good weak-strong-like 
case for tests with a crab cavity prototype. In 
terms of emittance growth, the reality turned 
out closer to a strong-strong case
– Analogously to a strong-strong beam-beam 

force, the impedance can shift coherent 
modes of oscillation outside of the 
incoherent spectrum

– In the realm of instabilities, this would be 
called a loss of Landau damping, but here 
the mode 0 is stabilised by the impedance 
→ Natural damper
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– The circulant matrix model was used to describe these instabilties, the 
instability is comparable to those under study in lepton colliders.

13 / 24



3 Sept 2024 BB24

Conclusion

● For both Landau damping of the weak head-tail instability and the emittance growth 
due to noise, weak-strong models are sufficient to explain most observables in 
the high damper gain regime

→ In terms of Landau damping, it is critical to include all contributors to amplitude 
detuning (Head-on, (skew) long-range, offset collisions, lattice non-linearities 
(Landau octupoles), residual linear coupling

● Strong-strong beam instabilities were observed in the LHC but are fully stabilised 
by the transverse damper.

– High order mode coupling are not observed, likely damped by Landau, yet a 
self-consistent theoretical model for this does not exist.

– The circulant matrix model was used to describe these instabilties, the 
instability is comparable to those under study in lepton colliders.

● The suppression of emittance growth predicted by strong-strong models (with 
discrete modes outside of the incoherent spectrum) was observed experimentally 
in a different yet analogous setup without beam-beam at the SPS

– A suppression by up to a factor 10 was observed. It is unfortunately not useful 
in the high damper gain regime required in colliders with many bunches
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Linear coupling due to long-range interactions

● Long-range beam-beam interactions on a skew 
plane generate coupling and therefore can 
reduce Landau damping                                        
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● Missing long-range interaction (PACMAN effect) 
makes this contribution uncorrectable for all 
bunches A. Ribes Metidieri, et al., CERN-ACC-NOTE-2019-0037 

● The mitigation of this issue is based on tight 
control of the orbit in the interaction region
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stability is dominated here by other sources of 
detuning (here : Landau octuples) and long-
range interactions

● At intermediate separations (~1.5σ), the flip of 
the footprint can reduce Landau damping, 
possibly leading to instabilities

● Once head-on collision the beam profits form 
strong Landau damping

17 / 24



3 Sept 2024 BB24

Head-on beam-beam saves the day

● By generating a large amplitude detuning for the 
core of the beam distribution, head-on 
interaction is very efficient at providing Landau 
damping

18 / 24



3 Sept 2024 BB24

Head-on beam-beam saves the day

● By generating a large amplitude detuning for the 
core of the beam distribution, head-on 
interaction is very efficient at providing Landau 
damping

18 / 24



3 Sept 2024 BB24

Head-on beam-beam saves the day

● By generating a large amplitude detuning for the 
core of the beam distribution, head-on 
interaction is very efficient at providing Landau 
damping
– Only overcome by electron cloud 

instabilities in the LHC                                   
A. Romano, et al., Phys. Rev. Accel. Beams 21, 061002 (2018)

18 / 24



3 Sept 2024 BB24

Head-on beam-beam saves the day

● By generating a large amplitude detuning for the 
core of the beam distribution, head-on 
interaction is very efficient at providing Landau 
damping
– Only overcome by electron cloud 

instabilities in the LHC                                   
A. Romano, et al., Phys. Rev. Accel. Beams 21, 061002 (2018)

– Colliding as early as possible in the cycle 
was considered as a backup in the LHC 
since 2012. It is the baseline for HL-LHC 
and FCC-hh (β* levelling)

18 / 24



3 Sept 2024 BB24

Head-on beam-beam saves the day

● By generating a large amplitude detuning for the 
core of the beam distribution, head-on 
interaction is very efficient at providing Landau 
damping
– Only overcome by electron cloud 

instabilities in the LHC                                   
A. Romano, et al., Phys. Rev. Accel. Beams 21, 061002 (2018)

– Colliding as early as possible in the cycle 
was considered as a backup in the LHC 
since 2012. It is the baseline for HL-LHC 
and FCC-hh (β* levelling)

– An e-lens mimicking this behaviour would 
have a similar potential as a mitigation          
V. Shiltsev, el al., Phys. Rev. Lett. 119, 134802 (2017)
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Observations of instability with offset beams

● First observations in 2012, due to 
offset levelling in IP8, only super-
PACMAN bunches were affected        
X. Buffat, et al., Phys. Rev. ST Accel. Beams 17, 111002 

→ Mitigated by designing filling 
patterns for which no bunches miss 
collisions in IP1/5 and collide in IP8
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● First observations in 2012, due to 
offset levelling in IP8, only super-
PACMAN bunches were affected        
X. Buffat, et al., Phys. Rev. ST Accel. Beams 17, 111002 

→ Mitigated by designing filling 
patterns for which no bunches miss 
collisions in IP1/5 and collide in IP8

Fast crossing of transient unstable configuration
Instability when steady at 1.6σ full separation between the beams

● Dedicated experiment in 2018, 
demonstrating mitigation by fast 
crossing of the unstable condition          
S. Fartoukh, et al., CERN-NOTE-2019, in prep. 

→ This mitigation can work for a 
standard operational cycle, but it is 
not suitable for luminosity levelling 
with an offset
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Beam-beam interaction with a crossing angle

● In the presence of a crossing angle the beam-beam force differs in the plane 
parallel and perpendicular to the crossing angle A. Piwinski, IEEE Trans. Nucl. Sci. NS-24 1408 

– The force is comparable to a flatter beam with effective beam size in the 
crossing plane given by Φσ

x
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2 IPs with alternating crossing planes

● Without crossing angle, the octupoles setup which 
generate a positive direct detuning term (the so-called 
positive polarity) is favourable from long-range to head-on
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Tune footprint with a crossing angle and an offset
2 IPs with alternating crossing planes

● Without crossing angle, the octupoles setup which generate a 
positive direct detuning term (the so-called positive polarity) is 
favourable from long-range to head-on

● With a Piwinski angle larger than 0.8, the positive polarity 
remains mostly favourable except for separations ~1.5-2σ

→ Exactly at the most critical separations, caused by the 
flip of the footprint !
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An effective mitigation

● By introducing a separation bump parallel to the crossing angle bump, 
instead of perpendicular, the positive polarity of the octupoles remains 
favourable all along the process

→ The mitigation of instabilities in the presence of beam-beam interaction 
requires a detailed knowledge of the amplitude detuning, since there are 
several degrees of freedom that have a significant impact
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● The spectrum of coherent beam-beam modes strongly depends on the complexity of the 
machine / beam setup (number of IPs, number of bunches, phase advances between 
them, asymmetries between the beams) T. Pieloni, PhD Thesis EPFL 2008

● The circulant matrix model is particularly handy to predict the mode frequency in complex 
configurations, as well as the effectiveness of other mitigation techniques such as 
chromaticity or active feedbacks                                                                                            
E. A. Perevedentsev and A. A. Valishev, Phys. Rev. ST Accel. Beams 4, 024403                                                                                        
S. White, et al., Phys. Rev. ST Accel. Beams 17 041002 (2014)                                                                                                                 
X. Buffat, PhD Thesis EPFL, 2015
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● The mode coupling instability of colliding beam is 
well suppressed by a transverse feedback in 
configurations relevant for the HL-LHC with the 
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Offset beams + crossing angle

● The mode coupling instability of colliding beam is 
well suppressed by a transverse feedback in 
configurations relevant for the HL-LHC with the 
'normal' setup of crossing and separation bumps

● With the configuration favourable for Landau 
damping, we find coupling of high order modes

→ Fresh off the press, to be continued...
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