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 Many interplays in hadron colliders are covered during the workshop:

— Lattice resonances (E. Maclean, et al.)

- Collimation (F. van Der Veken, et al., C.E. Montanatri, et al.)
— Luminosity calibration (J. Wanczyk, et al)

- Wire compensation (G. Sterbini, et al., P. Belanger, et al.)
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- Interplay with wide-band noise and feedbacks
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Weak head-tail instability in the weak-strong regime

* Considering the other beam as a frozen lens, one may use the dispersion integrals
derived for the Landau octupoles [Scott Berg96] (or with an RFQ [Schenk18] to
take into account the Jz dependence with a Xing angle / hourglass effect):
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* Electron cloud instabilities were still observed in
the LHC in collision, in spite of the large beam-
beam in collision tune spread [Romano18]
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Coherent beam-beam modes
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- Extend the theory with impedance?
- Macro-particle tracking simulation “14 -12 -10 08 06 0.4 0.2 00

* The interaction of coherent beam-beam mode with the transverse impedance can
result in strong mode coupling instabilities
- Two main linear approaches:

* [Whitel4], based on the circulant matrix model (CMM) [Perevedentsev01]
* [Zhang23] based on the cross-wake approach (CWA) [Ohmil7]
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The circulant matrix model vs the cross-wake approach

CMM CWA
Dynamical variables Transverse Transverse amplitude
coordinates of each and phase of each
cell mode
Radial decomposition Uniform discretisation
Azimuthal Uniform discretisation Fourrier modes
decompositon
Arc Rotation matrix + Phase term
circulant matrix
Beam-beam model Hirata-style Cross-wake
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The circulant matrix model vs the cross-wake approach

Dynamical variables

Radial decomposition

Azimuthal
decompositon

Arc

Beam-beam model

- Eigenvalue problem yielding the stability of the transverse modes of oscillation
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CWA

Transverse Transverse amplitude

coordinates of each and phase of each
cell mode

Uniform discretisation
Uniform discretisation Fourrier modes

CMM

Rotation matrix + Phase term
circulant matrix
Hirata-style Cross-wake



The circulant matrix model vs the cross-wake approach

Hirata-style (without energy change)
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The circulant matrix model vs the cross-wake approach

Linearised kick on
individual particles based —0-02
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The circulant matrix model vs the cross-wake approach
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Hirata-style (without energy change)

* Integrate the force on the transverse
distribution (coherent kick [Hirata88]):

F;Oh(ax, oy) = Fy(V20,,V20,)
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The circulant matrix model vs the cross-wake approach

* |mportant difference to be further understood:

- Impact of drifts (phase advance of the interaction, causality)
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* |mportant difference to be further understood:

- Impact of drifts (phase advance of the interaction, causality)

— Impact of coherent vs incoherent force (Usually the usage of the incoherent
force leads to an overestimation of the coherent mode shift by a factor 2!

[Yokoya88])

- Impact of hourglass effect
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Mode coupling instability of colliding beams
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* As predicted by the models, experimentally it
could be verified in the LHC that:

- The transverse feedback is effective against
this instability [White14]
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Mode coupling instability of colliding beams
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* As predicted by the models, experimentally it
could be verified in the LHC that:

- The transverse feedback is effective against
this instability [White14]

— Lattice non-linearities (here: octupoles) can
provide Landau damping for the m-mode, but
quite inefficiently [Buffat19]

3 Sept 2024 BB24



Mode coupling instability of colliding beams
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Mode coupling instability at the HL-LHC

» * Using [Alexahin02] nomenclature,
x10 | (HL-)LHC is in the ‘intermediate Qs’
RIS ST "W P S regime (E~50s), thus Landau
damping by synchrotron sidebands is
possible
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— Observed in simulation [Barraud19]

Growth rate [1/turn]
s

o

3 Sept 2024 BB24



Mode coupling instability at the HL-LHC

Linearised model
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Mode coupling instability at the HL-LHC

Tracking including 6D non- 1 inearised model

linear BB force (COMBI
( ) CMw * Using [Alexahin02] nomenclature,

e (HL-)LHC is in the ‘intermediate Qs’
=3 i damping by synchrotron sidebands is
L s possible
© >f..
§ . — Observed in simulation [Barraud19]
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0
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Mode coupling instability at the HL-LHC

Tracking including 6D non- 1 inearised model

linear BB force (COMBI _
( ) CMw * Using [Alexahin02] nomenclature,

_ e (HL-)LHC is in the ‘intermediate Qs’
=3 i e T damping by synchrotron sidebands is
L ; possible
© ...
§ — Observed in simulation [Barraud19]
1t
5
0

e Coupling of higher order head-tall
mode is also observed on in the
linearized model

Re(Q)

— They are not damped by the

tracking, probably also due to 0.2

Landau damping by sidebands 0'8_0 05 10 15 20 25 30
3 x 1072

3 Sept 2024 BB24



Interplay with noise

e Sources of noise: Ground motion, power converter ripple, transverse
damper, crab cavities, electron lens [Shiltsev16, Fischerl7], ...
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e Sources of noise: Ground motion, power converter ripple, transverse
damper, crab cavities, electron lens [Shiltsev16, Fischerl7], ...

* The modeling of emittance growth due to decoherence feature strong
similarites with Landau damping of beam instabilities:

- Detailed weak-strong model including a damper [Lebedev95], extended
to crab cavity noise with RF curvature [Baudrenghienl15] but with a
limited validity (-~ No coherent beam-beam mode)
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Interplay with noise

e Sources of noise: Ground motion, power converter ripple, transverse
damper, crab cavities, electron lens [Shiltsev16, Fischerl7], ...

* The modeling of emittance growth due to decoherence feature strong
similarites with Landau damping of beam instabilities:

- Detailed weak-strong model including a damper [Lebedev95], extended
to crab cavity noise with RF curvature [Baudrenghienl15] but with a
limited validity (-~ No coherent beam-beam mode)

- More involved models for strong-strong predicting a very different
behaviour if coherent beam-beam modes exists [Alexahin96]
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Interplay with noise

e Sources of noise: Ground motion, power converter ripple, transverse
damper, crab cavities, electron lens [Shiltsev16, Fischerl7], ...

* The modeling of emittance growth due to decoherence feature strong
similarites with Landau damping of beam instabilities:

- Detailed weak-strong model including a damper [Lebedev95], extended
to crab cavity noise with RF curvature [Baudrenghienl15] but with a
limited validity (-~ No coherent beam-beam mode)

- More involved models for strong-strong predicting a very different
behaviour if coherent beam-beam modes exists [Alexahin96]

/ * In modern colliders, a strong damper Is
/ | = Siomsios required to stabilise the coupled bunch
s\ \ | Weakstrong || instability — In this regime the weak-
=4 ‘ é ‘ strong and strong-strong models do not
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£ — This regime is most studied
521 experimentally
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< ‘P coherent modes [Alexahin02, Pieloni08],

T 015 _ such that the weak-strong model may be
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Emittance growth reduction at the LHC
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* New low-noise pickup electronics,
doubling the number of pickups (now 8
per beam and per plane) [Valuch22]
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* Only low order coupled bunch modes
require stabilisation

- Reducing the bandwidth of the
damper allows to further reduce the
emittance growth when dominated by
pickup noise (i.e. high gain regime) :
[Furuseth21, Dubouchet1?2] 107 S — S0 20 b
feutort [MHZ] BW
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The SPS looked like a good weak-strong-like
case for tests with a crab cavity prototype. In
terms of emittance growth, the reality turned
out closer to a strong-strong case

- Analogously to a strong-strong beam-beam
force, the impedance can shift coherent
modes of oscillation outside of the
Incoherent spectrum

In the realm of instabilities, this would be
called a loss of Landau damping, but here
the mode O is stabilised by the impedance
— Natural damper

3 Sept 2024

=== Coherent tune

=
9
o

=== Coherent tune

10—10

0.178 0.180
Q

0.182 0.184




The SPS looked like a good weak-strong-like
case for tests with a crab cavity prototype. In
terms of emittance growth, the reality turned
out closer to a strong-strong case

- Analogously to a strong-strong beam-beam

force, the impedance can shift coherent
modes of oscillation outside of the
Incoherent spectrum

In the realm of instabilities, this would be
called a loss of Landau damping, but here
the mode O is stabilised by the impedance

— Natural damper

A new theory based on Y. Alexahin’s work for
beam-beam (Vlasov perturbation theory a la Van
Kampen) correctly models the transition from a
configuration dominated by coherent modes (~SS)
to a configuration dominated by incoherent effects
(~WS)

- First experimental demonstration of such a
theory
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configuration dominated by coherent modes (~SS)
to a configuration dominated by incoherent effects
(~WS)

- First experimental demonstration of such a
theory

BB24

107

Growth Rate [um/h]
N w S
o o o

=
o

o

| -==- Coherent tune

107

1076

=
o
L

Amplitude [arb. units]
-
5

=
9
o

10—10

H === Coherent tune

0.178

0.180 0.182
Q

Model | |
with impedance | |
Model | §
with impedance || |
+ SC )
-~ Measured

-Jl |

—4

=2 0

2 4 x10~4

Detuning

3 Sept 2024

0.184



Conclusion

* For both Landau damping of the weak head-tall instability and the emittance growth
due to noise, weak-strong models are sufficient to explain most observables in
the high damper gain regime
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due to noise, weak-strong models are sufficient to explain most observables in

the high damper gain regime

- In terms of Landau damping, it is critical to include all contributors to amplitude
detuning (Head-on, (skew) long-range, offset collisions, lattice non-linearities
(Landau octupoles), residual linear coupling
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Conclusion

* For both Landau damping of the weak head-tall instability and the emittance growth
due to noise, weak-strong models are sufficient to explain most observables in
the high damper gain regime

- In terms of Landau damping, it is critical to include all contributors to amplitude
detuning (Head-on, (skew) long-range, offset collisions, lattice non-linearities
(Landau octupoles), residual linear coupling

e Strong-strong beam instabilities were observed in the LHC but are fully stabilised
by the transverse damper.

— High order mode coupling are not observed, likely damped by Landau, yet a
self-consistent theoretical model for this does not exist.

— The circulant matrix model was used to describe these instabilties, the
Instability is comparable to those under study in lepton colliders.
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Conclusion

* For both Landau damping of the weak head-tall instability and the emittance growth
due to noise, weak-strong models are sufficient to explain most observables in
the high damper gain regime

- In terms of Landau damping, it is critical to include all contributors to amplitude
detuning (Head-on, (skew) long-range, offset collisions, lattice non-linearities
(Landau octupoles), residual linear coupling

e Strong-strong beam instabilities were observed in the LHC but are fully stabilised
by the transverse damper.

— High order mode coupling are not observed, likely damped by Landau, yet a
self-consistent theoretical model for this does not exist.

— The circulant matrix model was used to describe these instabilties, the
Instability is comparable to those under study in lepton colliders.

* The suppression of emittance growth predicted by strong-strong models (with
discrete modes outside of the incoherent spectrum) was observed experimentally
In a different yet analogous setup without beam-beam at the SPS

— A suppression by up to a factor 10 was observed. It is unfortunately not useful
In the high damper gain regime required in colliders with many bunches
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The beam-beam force for round beams
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The beam-beam force for round beams
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The beam-beam force for round beams
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The beam-beam force for round beams
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The beam-beam force for round beams
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Linear coupling due to long-range interactions
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* Long-range beam-beam interactions on a skew
plane generate coupling and therefore can

reduce Landau damping

F. Ruggiero et al, LHC Project Report 627
L.Carver, et al., Phys. Rev. Accel. Beams 21, 044401
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Linear coupling due to long-range interactions
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Flattop
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Linear coupling due to long-range interactions

L0 | Xing L0
E 0.5 : 0.5
§ 00 % E 09|
€ —0.5 i —0.5
—1.0p L 100
150 SRR é i _15L 1 i 1 i
198 1.99 200 201 2.02 —9 1 0 I >
s [m] x 10* X [m] %102
Long-range beam-beam interactions on a skew J. Wenninger, et al., CERN-ACC-NOTE-2018-0026
plane generate coupling and therefore can 0.00201 —— ¢
reduce Landau damping 0.00151 —— LR all IPs
F. Ruggiero et al, LHC Project Report 627
L.Carver, et al., Phys. Rev. Accel. Beams 21, 044401 . 0.0010+ —+ LRIPLS5

Missing long-range interaction (PACMAN effect)m 0.00051

makes this contribution uncorrectable for all 0.0000
bunches A. Ribes Metidieri, et al., CERN-ACC-NOTE-2019-0037 —0.0005 -

—0.00101

The mitigation of this issue is based on tight
control of the orbit in the interaction region

Flattop
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Landau damping with beam-beam interactions

0.0f
~0.2}

~0.4

Q, [¢]

~0.6}

~0.8

R A e e e
~1.0 —0.8 —0.6 04 —02 0.0 0.2
Q, [&]

3 Sept 2024 BB24



Landau damping with beam-beam interactions
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Landau damping with beam-beam interactions

. . 2 IPs together, with
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Landau damping with beam-beam interactions

2 1Ps together, with

02 Vertical sep. BGHO,ﬂZOI}tal Sep. alternating separation plane
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Landau damping with beam-beam interactions

2 1Ps together, with

Vertical sep. _ Horizontal sep. alternating separation plane
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1 7 N O T O |
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 When the beams are separated the beam

stability is dominated here by other sources of
detuning (here : Landau octuples) and long-
range interactions
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Landau damping with beam-beam interactions

2 1Ps together, with

Vertical sep. Horizontal sep.
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 When the beams are separated the beam

stability is dominated here by other sources of
detuning (here : Landau octuples) and long-
range interactions

e Atintermediate separations (~1.50), the flip o
the footprint can reduce Landau damping,
possibly leading to instabilities
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Landau damping with beam-beam interactions

2 1Ps together, with
alternating separation plane

Vertical sep. Horizontal sep.
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 When the beams are separated the beam
stability is dominated here by other sources of
detuning (here : Landau octuples) and long-
range interactions

e Atintermediate separations (~1.50), the flip o
the footprint can reduce Landau damping,
possibly leading to instabilities

* Once head-on collision the beam profits form e e s 00 050
strong Landau damping Re(AQ) [10-%]
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Head-on beam-beam saves the day

4
0.324 o 10—
8,
0.322 7l
0.320¢} )
> 2)5
N 0.318¢ T4
0.316/ —  Head-on 3
» — Long-range | | 2t
0.314 —  Octupole 1t
0.312 0'

0.304 0.307 0.310 0.313 3 2 1 0 1 2
Oy Re(AQ) x1073

* By generating a large amplitude detuning for the
core of the beam distribution, head-on
interaction is very efficient at providing Landau
damping
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Head-on beam-beam saves the day
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Head-on beam-beam saves the day

4
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Ox

* By generating a large amplitude detuning for the
core of the beam distribution, head-on

interaction is very efficient at providing Landau JErs s e
damping 2O } =
- Only overcome by electron cloud X
instabilities in the LHC Bl B o
A. Romano, et al., Phys. Rev. Accel. Beams 21, 061002 (2018) cé) = , = — - -
0.5 = —F
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Head-on beam-beam saves the day
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* By generating a large amplitude detuning for the
core of the beam distribution, head-on

interaction is very efficient at providing Landau 3.0 e s S A s
damping 2o ; -
— Only overcome by electron cloud co e e——— ——
instabilities in the LHC Elmmee= s S e
A. Romano, et al., Phys. Rev. Accel. Beams 21, 061002 (2018) o Y —— -
- Colliding as early as possible in the cycle E 1.0 - : F =
was considered as a backup in the LHC 05 = —
since 2012. It is the baseline for HL-LHC S e T e - e
and FCC-hh (B* levelling) Ble-n = = -
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Head-on beam-beam saves the day

—4
0.324 9210~
8,
0.322f |
0.320} _ 6}
> %)5
0.318] =
0.316¢ —— Head-on 3
» — Long-range | | 2t
0.314 —  Octupole 1t
031270304 0.3'022 0310 0313 23
* By generating a large amplitude detuning for the
core of the beam distribution, head-on _ -
interaction is very efficient at providing Landau SV e
damping 2.5f == ; ' ===
- Only overcome by electron cloud CoO e - e
instabilities in the LHC El B s e
A. Romano, et al., Phys. Rev. Accel. Beams 21, 061002 (2018) QO 15 , = —— -
- Colliding as early as possible in the cycle E 1.0 S : F =
was considered as a backup in the LHC 05 = —
since 2012. It is the baseline for HL-LHC =T ==m—ama=
and FCC-hh (B* levelling) W= =
- An e-lens mimicking this behaviour would 0.315 O'Sgg(e)ctruorﬁ% 0.330

have a similar potential as a mitigation
V. Shiltsev, el al., Phys. Rev. Lett. 119, 134802 (2017)
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Observations of instability with offset beams

» First observations in 2012, due to "%1-5 5

PACMAN bunches were affected L i I S s B [
X. Buffat, et al., Phys. Rev. ST Accel. Beams 17, 111002 0.0 Lt ‘ ‘ ‘ ‘ ' ‘ ‘
_, Mitigated by designing filling L ————
patterns for which no bunches miss .giﬁczlf —— L
collisions in IP1/5 and collide in 1P8 y—-

T oA H—H =

) . e

00024 6 s 10 12 14
Time [h of luminosity production]
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Observations of instability with offset beams

* First observations in 2012, due to
offset levelling in IP8, only super-
PACMAN bunches were affected

X. Buffat, et al., Phys. Rev. ST Accel. Beams 17, 111002

— Mitigated by designing filling
patterns for which no bunches miss
collisions in IP1/5 and collide in IP8

* Dedicated experiment in 2018,
demonstrating mitigation by fast

crossing of the unstable condition
S. Fartoukh, et al., CERN-NOTE-2019, in prep.
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Observations of instability with offset beams

» First observations in 2012, due to "%1-5
Offset |eve”|ng |n |P8’ Only Super' 319;10 N ; N
PACMAN bunches were affected L i I S s B [
X. Buffat, et al., Phys. Rev. ST Accel. Beams 17, 111002 0.0* o ‘ ‘ ‘ ‘ : ‘ \
. Mitigated by designing filling 1 ——
patterns for which no bunches miss .giﬁcz)f —— L
collisions in IP1/5 and collide in IP8 hi——— "¢
T 04T — =
0.2} _—
0072 4 6 8 10 12 14

Time [h of luminosity production]

* Dedicated experiment in 2018, le2 1e=3 4=
demonstrating mitigation by fast 201 s,
. . Q
crossing of the unstable condition = 35
S. Fartoukh, et al., CERN-NOTE-2019, in prep. G 121 =
- E

ey ©
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Fast crossing of transient unstable configuration ISt (ifd
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Observations of instability with offset beams

* First observations in 2012, due to "%1-5
offset levelling in IPS. only super- e e |
PACMAN burches were affected L i I S s B [
X. Buffat, et al., Phys. Rev. ST Accel. Beams 17, 111002 0.0 o ‘ ‘ ‘ ‘ ' ‘ ‘
— Mitigated by designing filling s _
patterns for which no bunches miss .giﬁcz)f — L]
collisions in IP1/5 and collide in I1P8 i —— = =4
T 04| — =
0.2
0002 4 6 8 10 12 14

* Dedicated experiment in 2018, le2 4
demonstrating mitigation by fast 2.0 s
crossing of the unstable condition - 33
S. Fartoukh, et al., CERN-NOTE-2019, in prep. E 1.5] "—E_

iy ©
E’ 1.0 2§
£ =
30.5] *1%
5

0.0 1o

. . . . T s
Fast crossing of transient unstable configuration ISt (ifd
Instability when steady at 1.60 full separation between the beams
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Observations of instability with offset beams

* First observations in 2012, due to "%1-5
offset levelling in IPS. only super- e e |
PACMAN burches were affected L i I S s B [
X. Buffat, et al., Phys. Rev. ST Accel. Beams 17, 111002 0.0 o ‘ ‘ ‘ ‘ ' ‘ ‘
— Mitigated by designing filling s _
patterns for which no bunches miss .giﬁcz)f — L]
collisions in IP1/5 and collide in IP8 i —— = =4
T 04| — =
0.2
0002 4 6 8 10 12 14

with an offset

* Dedicated experiment in 2018, le2 4
demonstrating mitigation by fast 201 s,
crossing of the unstable condition - 33
S. Fartoukh, et al., CERN-NOTE-2019, in prep. E 1.5] ',—E_

=
_ This mitigation can work for a 210 2¢
standard operational cycle, but it is E £
not suitable for luminosity levelling ~ ~os 1§
o

093 7 4 6 8/10 12 14°

. . . . T s
Fast crossing of transient unstable configuration ISt (ifd
Instability when steady at 1.60 full separation between the beams
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Beam-beam interaction with a crossing angle

T 620.01 T
N - $=00
S \ — ¢ =2.0, Xing plane

—  ¢=2.0, sep. plane

Kick [o,/]

Position [c, ]

* In the presence of a crossing angle the beam-beam force differs in the plane
parallel and perpendicular to the crossing angle a. pivinski, ieee Trans. Nucl. sci. Ns-24 1408

- The force is comparable to a flatter beam with effective beam size in the
crossing plane given by ®o_
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Tune footprint with a crossing angle and an offset

2 IPs with alternating crossing planes

¢ = 0.0

* Without crossing angle, the octupoles setup which
generate a positive direct detuning term (the so-called
positive polarity) is favourable from long-range to head-on

3 Sept 2024 BB24



Tune footprint with a crossing angle and an offset

2 IPs with alternating crossing planes

* Without crossing angle, the octupoles setup which
generate a positive direct detuning term (the so-called
positive polarity) is favourable from long-range to head-on
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Tune footprint with a crossing angle and an offset

2 IPs with alternating crossing planes

* Without crossing angle, the octupoles setup which
generate a positive direct detuning term (the so-called
positive polarity) is favourable from long-range to head-on
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Tune footprint with a crossing angle and an offset

2 IPs with alternating crossing planes

* Without crossing angle, the octupoles setup which
generate a positive direct detuning term (the so-called
positive polarity) is favourable from long-range to head-on

~15 -1.0 05 0.0 05 1.0 1.5
AQ, le-3
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Tune footprint with a crossing angle and an offset

2 IPs with alternating crossing planes

* Without crossing angle, the octupoles setup which generate a

positive direct detuning term (the so-called positive polarity) is
favourable from long-range to head-on

* With a Piwinski angle larger than 0.8, the positive polarity
remains mostly favourable except for separations ~1.5-2¢0

— Exactly at the most critical separations, caused by the

~15 -1.0 05 0.0 05 1.0 1.5

flip of the footprint ! Aq. le-3
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An effective mitigation

Sep. L Xing
00¢:20

_0.8_ ______ /
(g 5=

By introducing a separation bump parallel to the crossing angle bump,

Instead of perpendicular, the positive polarity of the octupoles remains
favourable all along the process
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An effective mitigation

Sep. L Xing

_0.8_ ______ /
J 52

By introducing a separation bump parallel to the crossing angle bump,

Instead of perpendicular, the positive polarity of the octupoles remains
favourable all along the process

-~ The mitigation of instabilities in the presence of beam-beam interaction

requires a detailed knowledge of the amplitude detuning, since there are
several degrees of freedom that have a significant impact

3 Sept 2024 BB24



Coherent beam-beam modes

IdINOD
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Coherent beam-beam modes

Expected coherent
modes experience
Landau damping
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Coherent beam-beam modes

Expected coherent
modes experience
Landau damping

'

%, QLT LN
‘; M L{ 'H‘ Tk

0]

IdINOD

Q, = 0.405, Q, = 0.905
Q+Q,=Q

~14 -12 -1.0 -0.8 -0.6 -0.4 —-0.2 0.0
AQ[¢&]

* The spectrum of coherent beam-beam modes strongly depends on the complexity of the
machine / beam setup (number of IPs, number of bunches, phase advances between
them, asymmetries between the beams) . pieloni, PhD Thesis EPFL 2008
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Coherent beam-beam modes

Expected coherent
modes experience
Landau damping

'

0]

IdINOD

Q, = 0.405, Q, = 0.905
Q+Q,=Q

~14 -12 -1.0 -0.8 -0.6 -0.4 —-0.2 0.0
AQ[¢&]

* The spectrum of coherent beam-beam modes strongly depends on the complexity of the
machine / beam setup (number of IPs, number of bunches, phase advances between
them, asymmetries between the beams) . pieloni, PhD Thesis EPFL 2008

* The circulant matrix model is particularly handy to predict the mode frequency in complex
configurations, as well as the effectiveness of other mitigation techniques such as

chromaticity or active feedbacks

E. A. Perevedentsev and A. A. Valishev, Phys. Rev. ST Accel. Beams 4, 024403
S. White, et al., Phys. Rev. ST Accel. Beams 17 041002 (2014)

X. Buffat, PhD Thesis EPFL, 2015
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Offset beams + crossing angle

Sep. L Xing

o
1

AQx [Qs]
&

Growth rate [10~%4/turn]

00 05 10 15 20 25 30 35 4.0
Separation [0O]

* The mode coupling instability of colliding beam is
well suppressed by a transverse feedback in
configurations relevant for the HL-LHC with the
'normal’ setup of crossing and separation bumps
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Offset beams + crossing angle
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* The mode coupling instability of colliding beam is
well suppressed by a transverse feedback in
configurations relevant for the HL-LHC with the
'normal’ setup of crossing and separation bumps

* With the configuration favourable for Landau
damping, we find coupling of high order modes

3 Sept 2024 BB24



Offset beams + crossing angle
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* The mode coupling instability of colliding beam is
well suppressed by a transverse feedback in
configurations relevant for the HL-LHC with the
'normal’ setup of crossing and separation bumps \

* With the configuration favourable for Landau
damping, we find coupling of high order modes
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Offset beams + crossing angle
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* The mode coupling instability of colliding beam is
well suppressed by a transverse feedback in
configurations relevant for the HL-LHC with the
'normal’ setup of crossing and separation bumps \

* With the configuration favourable for Landau
damping, we find coupling of high order modes

— Fresh off the press, to be continued...

BB24
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