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In high brightness circular colliders, coherent and incoherent beam dynamics are dominated by beam-
beam interactions. It is generally assumed that the incoherent tune spread introduced by the beam-beam
interactions is sufficiently large to cure any instabilities originating from impedance. However, as the two
counterrotating beams interact they can give rise to coherent dipole modes and therefore modify the
coherent beam dynamics and stability conditions. In this case, coherent beam-beam effects and impedance
cannot be treated independently and their interplay should be taken into account in any realistic attempt to
study the beam stability of colliding beams. Due to the complexity of these physics processes, numerical
simulations become an important tool for the analysis of this system. Two approaches are proposed in this
paper: a fully self-consistent multiparticle tracking including particle-in-cell Poisson solver for the beam-
beam interactions and a linearized model taking into account finite bunch length effects. To ensure the
validity of the results a detailed benchmarking of these models was performed. It will be shown that under
certain conditions coherent beam-beam dipole modes can couple with higher order headtail modes and lead
to strong instabilities with characteristics similar to the classical transverse mode coupling instability
originating from impedance alone. Possible cures for this instability are explored both for single bunch and
multibunch interactions. Simulation results and experimental evidences of the existence of this instability at
the LHC will be presented for the specific case of offset collisions.

DOI: 10.1103/PhysRevSTAB.17.041002 PACS numbers: 29.20.-c, 29.27.-a, 07.05.Tp
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TMCI with both impedance and beam-beam

CMM = Circulant Matrix Model

1st introduced in 1993 by V.V. Danilov and E.A. Pereve-
dentsev in “Feedback system for elimination of the
transverse mode coupling instability” e lesiCM. )

CERN LIBRARIES, GENEVA (ERu -st 8238 Af

LT st

CM-P00061155
BEUROPEAN LABORATORY FOR PARTICLE PHYSICS

G || 035

Feedback System for Elimination
of the Transverse Mode Coupling
Instability

N=5

Figure 1: Division of the longitudinal phase space into mesh elements for the hollow beam
model. Here N =2k +1 =5. Figure 2: The mesh elements for radial modes.

V.V. Danilov and E.A. Perevedentsev
SL Division, CERN*



https://cds.cern.ch/record/253913/files/CM-P00061155.pdf

TMCI with both impedance and beam-beam

*  We start with the study of the centroid motion of each discretized element, or beamlet, in the transverse plane and the
goal is to obtain the full one-turn matrix. Then, the properties of the dynamical system are studied via the
eigenvalues (and eigenvectors) of the full one-turn matrix

FIG. 2. Illustration of the discretization of the longitudinal
phase space in slices and rings within the CMM.
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@V TMCI with both impedance and beam-beam

*  We start with the study of the centroid motion of each discretized element, or beamlet, in the transverse plane and the
goal is to obtain the full one-turn matrix. Then, the properties of the dynamical system are studied via the
eigenvalues (and eigenvectors) of the full one-turn matrix

* CMM is very versatile and can be used with impedance (driving and detuning), transverse feedback, beam-beam,
second-order chromaticity, space charge, etc.

% These effects have been implemented in a code called BIMBIM started by X. Buffat during his PhD thesis
(https://cds.cern.ch/record/1987672/files/ CERN-THESIS-2014-246.pdf) Transverse beams stability studies at the Large Hadron

Collider

&/ 0'5.

THESE N° 6321 (2015)

PRESENTEE LE 30 JANVIER 2015
ALA FACULTE DES SCIENCES DE BASE
LABORATOIRE DE PHYSIQUE DES ACCELERATEURS DE PARTICULES.
PROGRAMME DOCTORAL EN PHYSIQUE

ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE

POUR L'OBTENTION DU GRADE DE DOCTEUR ES SCIENCES
z/o;

PAR

Xavier BUFFAT

FIG. 2. Illustration of the discretization of the longitudinal
phase space in slices and rings within the CMM.

E. Métral, BB24 workshop, EPFL, Lausanne, 02-05/09/2024
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parameters corresponding to the TMCI intensity thresholds
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1, with both impedance and beam-beam for the 4 beam-beam
parameters corresponding to the TMCI intensity thresholds
of Fig. 3: (top left) 3.16 x 1073; (top right) 3.87 x 1073;
(bottom left) 4.71 x 10~3; (bottom right) 5.38 x 1073.
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@A] Conclusion

¢ A TMCI can be analysed either through the eigenvalues or/and the
eigenvectors => Was only analysed through the eigenvalues in the
past (see e.g. the 2 famous textbooks from A.W. Chao or K.Y. Ng, or
Y.H. Chin with MOSES code, or Laclare, etc.)

+ In some cases, these two approaches lead to the same conclusions and
one or the other approach can be used in the presence of only one
mode coupling and decoupling (if any)

+ However, in the presence of several mode couplings and decouplings
(as e.g. discussed in this paper), the situation is more involved and it is
not possible anymore to tell, from a single picture of intrabunch motion
only, if it corresponds to mode coupling or mode decoupling
=> To be able to reconstruct what really happens, the intrabunch
motion needs be carefully studied as a function of the bunch

intensity
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Take-home messages

Better characterizing an instability is the first step before trying to
find appropriate mitigation measures and push the performance of
a particle accelerator

The evolution of the intrabunch motion with intensity is a
fundamental observable with high-intensity high-brightness beams
Exactly at the mode coupling (or mode decoupling) threshold
between 2 modes, the intrabunch signal is the sum (or difference)
of the intrabunch signals of the 2 unperturbed modes (leading to
asymmetric pictures with new fixed points)!
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APPENDIX

(Some other TMCI intrabunch pictures with impedance and space charge; impedance only; e-cloud)
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Figure 3: Measurements at the CERN PS [8] (left) and PSB
(right, courtesy of E. Koukovini Platia [9]) in the presence

of both impedance and strong space charge.
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Figure 3: Measurements at the CERN PS [8] (left) and PSB
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Convective instabilities of bunched beams with space charge

A. Burov’
Fermilab, P.O. Box 500, Batavia, Illinois 60510-5011, USA

® (Received 12 July 2018; revised manuscript received 6 December 2018; published 28 March 2019)

For a single hadron bunch in a circular accelerator at zero chromaticity, without multiturn wakes and
without electron clouds and other beams, only one transverse collective instability is possible, the mode-
coupling instability (TMCI). For sufficiently strong space charge (SC), the instability threshold of the
wake-driven coherent tune shift normally increases linearly with the SC tune shift, as independently
concluded by several authors using different methods. This stability condition has, however, a very strange
feature: at strong SC, it is totally insensitive to the number of particles. Thus, were it correct, such a beam
with sufficiently strong SC, being stable at some intensity, would remain stable at higher intensity,
regardless of how much higher. This paper suggests a resolution of this conundrum: while SC suppresses
the TMC], it introduces head-to-tail convective amplifications, which could make the beam even less stable
than without SC, even if all the coherent tunes are real, i.e., all the modes are stable in the conventional
absolute meaning of the word. This is done using an effective new method of analysis of the beam’s
transverse spectrum for arbitrary space charge and wake fields. Two new types of beam instabilities are
introduced: the saturating convective instability and the absolute-convective instability.

DOI: 10.1103/PhysRevAccelBeams.22.034202
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start to couple. This figure is courtesy of Amorim [9].
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Figure 4: PYHEADTAIL simulations with electron cloud
only (courtesy of L. Sabato [10]).
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