EPFL

Swiss Accelerato Research and Technology

Joanna Wanczyk (CERN, OP-LHC)

03.09.24

Beam-beam effects in the luminosity calibration

On behalf of multiple experts; with Tatiana Pieloni and Witold Kozanecki present and many more experts from the LHC luminosity working group

Outline of the presentation

- Introduction to luminosity measurement and calibration
- Beam-beam effects on luminosity
- Corrections
 - Single IP parametrization + multi-collision tune shift
 - Application examples from experiments
- Uncertainties
 - Points considered in the recently published overview paper
 - Typical vdM uncertainties
- Verification with measurement
- Ongoing studies & open questions

Why is luminosity accuracy and precision important?

 $R_{en} = \mathcal{L} \sigma_{en}$

- Precision luminosity measurement requirements
 - single largest source of experimental uncertainty in the most precise Standard Model measurements
 - <u>Accurate</u> luminosity calibration requires a thorough understanding of the beam-related systematic effects to correct for calibration biases
- Evaluation of biases from systematic effects such as beam-beam, orbit drift, etc.
 - apply corrections
 - estimate contributions to systematic uncertainty
- Beam instrumentation used whenever possible for bunch and beam currents, beam position at the IP, tunes, ...
- Extended scan program used including multiple scans for dedicated studies
- ► First precision results in 2024 below 1%, DOI: 10.1140/epjc/s10052-023-11747-w
- Every year updated calibration: (2022 data) ATL-DAPR-PUB-2023-001, CMS-PAS-LUM-22-001, (2023 data) ATL-DAPR-PUB-2024-001, CMS-DP-2024-068, (2024 data)...

for example, top quark pair production in the latest CMS publication, the preliminary 2.3% luminosity uncertainty dominates the total experimental uncertainty of 2.5% from other source

will become even more important at HL-LHC with 1% target for absolute Higgs measurements

Luminosity calibration

- van der Meer (vdM) scans are performed every year to obtain the detector-specific visible cross-section σ_{vis}
- beams are moved across each other in discrete separation steps
- luminosity is given by the overlap integral of the particle densities $\rho_{1,i}, \rho_{2,i}$ in bunch-pair *i*: $\mathcal{L}_{inst}^{vdM} = \sum_{i}^{N_b} n_{1,i} n_{2,i} f_{rev} \int \int \int_{-\infty}^{+\infty} \rho_{1,i}(x, y, z, t) \rho_{2,i}(x, y, z, t) dx dy dz dt$
- the convolved transverse beam size can be extracted from the measured visible rate along the scan: $\Sigma_{\chi} = \frac{1}{\sqrt{2\pi}} \frac{\int R(\Delta_{\chi}, 0) d\Delta_{\chi}}{R(0.0)}$
- a pair of scans (one for each transverse direction) is performed to obtain the full overlap area $\Sigma_x \Sigma_y$
- the absolute head-on luminosity can be computed from the measured bunch parameters, and compared to the measured rate to obtain the calibration constant σ_{vis}
- σ_{vis} can later be used to measure luminosity directly from the rate:

When the beams are brought into collision

 expectation: high energy collisions between two protons, p+p = Higgs signatures

 reality (for ~99.999..% of beam particles): the trajectory is changed due to the electromagnetic interaction with the opposing beam

Calibration accuracy and beam-beam effect

- BB parameter ξ used as a reference to quantify the strength,
- but bunch includes a distribution of particles at different amplitudes,
- single particle trajectory changes depending on its amplitude due to non-linear force,
- as a result, there is a tune spread in the beam $\Delta Q \sim \xi$,
 - Beam-beam interaction has impact on the absolute luminosity calibration.
- Big interest from the experiments to implement corrections and estimate uncertainties,
- Various configurations with multiple interaction points need to be considered,
- Simulation codes used to obtain accurate and self-consistent results:
 - COherent Multibunch Beam-beam Interactions (COMBI) - strong-strong
 DOI: 10.5075/epfl-thesis-4211
 - ► B*B weak-strong
 - ► XSUIT^{*NEW}
 - DOI: <u>10.18429/JACoW-HB2023-TUA2I1</u>
 - MADX

1.0

Beam-beam force [arb. units]

Beam-beam effects on luminosity

- **Distinctive BB effects:**
 - deflection induces change in the orbit
 - optical distortion
 - induces changes in the beam widths (dynamic-beta)
 - amplitude-dependent changes - arbitrary **distribution** \rightarrow need for the lumi. integrator, COMBI development
- At the LHC opposite ► effects on luminosity
- Overall effect on the calibration constant slightly negative (sign and magnitude are tune-dependent)

in the first approximation beam size envelope changed

CÉRN

Corrections – beam-beam deflection

- Deflection **calculated analytically** from Bassetti-Erskine closed expression for the electrical field of a two-dimensional Gaussian charge *Q* distribution:
- For the same charged bunches moving in the opposite directions generates repulsive kick whenever the collision occurs with an **offset**:
- Causing an **additional orbit offset** at the Interaction Point:

$$\Delta_x^{\rm BB} = \frac{\theta_x \beta_x^*}{2 \tan \pi Q_x}.$$

• It is **added** as correction directly to the nominal beam position

$$\begin{split} E_x &= \frac{Q}{2\epsilon_0\sqrt{2\pi(\sigma_x^2 - \sigma_y^2)}} \Im\left[w \left(\frac{x + iy}{\sqrt{2(\sigma_x^2 - \sigma_y^2)}}\right) - e^{\left[-\frac{x^2}{2\sigma_x^2} + \frac{y^2}{2\sigma_y^2}\right]} w \left(\frac{x\frac{\sigma_y}{\sigma_x} + iy\frac{\sigma_x}{\sigma_y}}{\sqrt{2(\sigma_x^2 - \sigma_y^2)}}\right) \right], \\ E_y &= \frac{Q}{2\epsilon_0\sqrt{2\pi(\sigma_x^2 - \sigma_y^2)}} \Re\left[w \left(\frac{x + iy}{\sqrt{2(\sigma_x^2 - \sigma_y^2)}}\right) - e^{\left[-\frac{x^2}{2\sigma_x^2} + \frac{y^2}{2\sigma_y^2}\right]} w \left(\frac{x\frac{\sigma_y}{\sigma_x} + iy\frac{\sigma_x}{\sigma_y}}{\sqrt{2(\sigma_x^2 - \sigma_y^2)}}\right) \right]. \end{split}$$

$$\theta_x = \frac{2Nr_0}{\gamma}E_x.$$

Corrections - single-IP parametrization

- Optical distortion including the amplitude dependent changes
 - not possible to evaluate analytically in an accurate way evaluate with simulation
- Correction model parametrizing the beam-beam effects on luminosity $\mathcal{L}/\mathcal{L}_0(\Delta, \xi, Q_x, Q_y)$ in vdM conditions using:

Corrections - multi-collision cases

- contribution from the additional collisions at interaction points (IPs) other than the scanning IP
 - simulation campaign to evaluate them
- quadrupole-like approximation not correct
- additional collision = additional betatron tune shift
 - separation-dependent effect on luminosity changes depending on the collision configuration
 - in the example of 2 IPs double the effect on σ_{vis}

How to include that in the corrections in a universal way?

Impact of multi-IP effects on luminosity calibration

- Luminosity bias correction model based on the single-IP parametrization dependent on beams separation Δ , BB parameter and tunes $\mathcal{L}/\mathcal{L}_0(\Delta, \xi, Q_x, Q_y)$
- effective multi-IP tune shift ΔQ_{mIP} can be used to obtain the equivalent σ_{vis} bias
- simple scaling law derived from strong-strong simulations:

$$\Delta Q_{mIP} = -0.5 \times \xi N_{NSIP}$$

- valid for all LHC IPs
- verified in simulation for vdM regime (ξ <0.01)
- when considering more than single collision there is an ambiguity related to the normalization
 - 'witness' collision perturbed \mathcal{L}_u

Impact of multi-IP effects on luminosity calibration

- Luminosity bias correction model based on the single-IP parametrization dependent on beams separation Δ , BB parameter and tunes $\mathcal{L}/\mathcal{L}_0(\Delta, \xi, Q_x, Q_y)$
- effective multi-IP tune shift ΔQ_{mIP} can be used to obtain the equivalent σ_{vis} bias
- simple scaling law derived from strong-strong simulations:

$$\Delta Q_{mIP} = -0.5 \times \xi N_{NSIP}$$

- valid for all LHC IPs
- verified in simulation for vdM regime (ξ <0.01)
- when considering more than single collision there is an ambiguity related to the normalization
 - 'witness' collision perturbed \mathcal{L}_u
 - absolute \mathcal{L}_0 (no beam-beam interaction anywhere)
 - phase advance dependence, covered in uncertainty

Example luminometer calibration corrections

- vdM is the case of very **special beam conditions** that results in the ► increase of ξ over time in collision, standard $\xi \sim 0.003$ - 0.006
- per bunch corrections dependent on its parameters as well as the total number of collisions give spread in corrections (background colors)
- ► the sensitivity to tune setpoint (from difference of 0.01 $[2\pi]$)

EPFL, Thesis

Fill 8381 (2022, 13.6 TeV)

CMS Private work

 ξ_R

 ξ_x ξ_u

5.8

5.6 5.4

 $\xi \times 10^3$

5 (

Systematic effects after beam-beam corrections

- Typical total correction on the level of +1%,
- Beam-beam uncertainty sources considered:
 - nominal (Q_x, Q_y) , transverse non-Gaussianity, β^* , beam ellipticity, beam 1/beam 2 emittance imbalance, single & multi-IP modelling, phase advances.
 - Considered negligible in vdM conditions: residual crossing-angle, lattice non-linearities.

DOI: 10.1140/epjc/s10052-023-12192-5

- Procedures available for uncertainty determination can be obtained from:
 - parametrization,
 - or simulation.

- ► Typical total uncertainty of ~0.4% contributes directly to the total uncertainty of the calibration,
 - Most sensitive to the conditions (assessed with ξ) but also to the total number of collisions.

Residual beam-beam signatures?

- There are still open questions with regards to the beam-beam interaction and the luminosity calibration
- vdM data shows traces of differences evolving in time that depend on the collision pattern thus could be induced by the beam-beam interaction
- Interplay with other effects such as the linear coupling resonance, and non-factorization of x and y transverse distribution $\sigma_{vic} = 2\pi \frac{R_0^{vis}}{r}$

- Full modelling missing in the analysis of the non-standard scans (diagonal, offset, 2D...)
- Accuracy of some of the assumptions, for example Gaussian modelling for calculating the primary EM force, especially in the case of the observed q-Gaussian charge distribution at the LHC

Ongoing studies – BB impact on the luminous region

 Active code development to study the the impact of beam-beam interaction on the observable available during vdM scans - implemented in XSUIT due to its versatility and reliability

+ Chenying Zhang, Tatiana Pieloni (EPFL)

- **Luminous region** is reconstructed with high statistics detectors used to measure primary vertices,
- During vdM it is used to study transverse factorization of the charge distribution within a bunch,
- First insight into the beam-beam induced changes on the luminous region.

Ongoing studies – Possibility to study the BB induced non-factorization

• Developments with the goal to study the changes to charge distributions

New student Lia joined!

CÉRN

Ongoing studies – BB + linear coupling resonance

Bias from beam-beam

- By incorporating a skew quadrupole to introduce linear coupling the x y charge distribution product is modified
- Thus, luminosity bias curve from beambeam effects is also changed

*data aggregated over full horizontal scan, Chenying Zhang (EPFL/IC)

- This results in a corresponding reduction in σ_{vis} bias
- The effects of beam-beam effects and linear coupling resonance begin to cancel each other out (case of a horizontal 1IP scan)

Bias from beam-beam and coupling with $C^- = 16 \times 10^{-3}$

Ongoing studies – diagonal, offset, 2D scans

- Non-standard scans are not covered by the parametric model
- Angular symmetry broken with differences in tunes and phase advances
- Beam-beam bias on luminosity during a diagonal scan comes out in between the standard x and y directions
- Results in slightly reduced bias on σ_{vis} when compared to the standard scan pair

Beam-beam measurement

- Aimed at validation of the correction strategy used in the vdM calibration
- ▶ phase advance between IP1 & IP5 optimized for maximizing the effect on luminosity $(1 \rightarrow 3\%)$ at the witness IP at LHC injection energy 450 GeV
- methodology using the witness IP with configuration changes at other location
- repetitive steps used for validation
- first measurement of the impact of BB effects on the luminosity at the LHC
- scaling law with BB parameter verified
 - wire scanner measurements used as a reference to evaluate ξ_{BB}
 - very good agreement with simulation -

BB experiment - results

- observations of BB-induced changes during a separation scan
 - very clear on the mean tunes extracted from the spectra as well as on the luminosity
- observed scaling with the number of collision supports the multi-IP modeling strategy
- overall good agreement of all beam-beam tests with expectations

Application in the nominal conditions

- Possible to evaluate impact of beam-beam interaction in the high pileup conditions with 6D implementation: <u>CERN-ACC-NOTE-2019-0032</u>
- Can be used to remove the systematic bias in the detector response linearity measurement in **emittance scans**
- These scans are performed regularly at the LHC and are used to study the luminometer response

• By reconstructing the vdM-like calibration constant it is possible to study its dependence on the pileup (luminosity)

DOI: https://doi.org/10.1051/epjconf/201920104001

Application in the nominal conditions

DOI: https://doi.org/10.22323/1.449.0624

- main contributions to the measured non-linearity:
 - apparent BB-induced slope removed with COMBI simulation
 - intrinsic detector response inefficiencies

- possible additional biases from non-factorisation
- challenging fit quality
- operational limitations to be improved in the future
- possibility for an independent measurement
- valuable for HL-LHC
- further studies needed to make it precise

Conclusions

- Beam-beam interaction significantly impacts the luminosity calibration's systematic uncertainty using the vdM method
 - In the past, it was neglected or partially modeled wrongly
 - Extensive investigations within the LHC Luminosity Working Group during LHC's Long Shutdown 2 improved the understanding of luminosity calibration biases
 - A parametrized correction strategy was developed for multi-collision beam-beam bias modeling
 - A recipe was established for estimating beam-beam related systematic uncertainties based on beam conditions
 - These corrections and uncertainties are currently applied in ATLAS and CMS results, with successful benchmarking at the LHC.

Conclusions

- Ongoing studies explore the interplay of beambeam interactions with other effects
- Recent simulation code advancements enable the inclusion of new observables and the simulation of the nominal LHC and HL-LHC conditions
 - Results have applications in emittance scans ٠ to correct for beam-beam induced slopes in detector non-linearity measurements
- Findings are applicable to any hadron collider.

 $\Delta_x = 0.0\sigma, \ \Delta_v = 0.0\sigma$

Thank you for your attention! May the beam-beam force be with you!

1.04

1.02

1.00

Backup – exhaustive list of systematic effects

🖄 Springer

Table 8 Typical systematic uncertainties affecting beam-beam corrections to a hypothetical pp vdM calibration in a fully symmetric Gaussian-beam configuration, with the round-beam-equivalent beam-beam parameter set equal to ξ_{sim} , for three values of N_{NSIP} . For each source, the uncertainty is either evaluated at, or scaled linearly to, the value of ξ_{sim} indicated in the second column; if no value of ξ_{sim} is specified, the uncertainty listed covers the full range of ξ values encountered during pp vdM scans at the LHC. When an uncertainty is assumption-dependent, the value flagged by an asterisk is that used in computing the total uncertainty; the latter is compared to the overall beam-beam correction itself in the bottom two rows of the Table. The rightmost column indicates the chapter(s) where the corresponding issues are discussed in detail

Beam–beam (b-b) uncer- tainty source	$\xi_{\rm sim}[10^{-3}]$	Uncertainty-determination procedure	$\sigma_{\rm vis}$ uncertainty [%] for $N_{\rm NSIP}$ =			Comments	See Sect.
			0	1	2		
Absolute ξ scale: β^* uncertainty at the scan- ning IP	5.60	Vary β^* by $\pm 10\%$ in the simulation or parameterization (Sect. 4.2.3), for each beam and in each plane	0.06	0.10 (total for both beams and both planes)	0.13	β^* uncertainty assumed uncorre- lated between beams, correlated between planes	4.2.1 + 5.1.1
Nominal collision tunes	5.60	Vary q_x , q_y by ± 0.002 in the simulation or parameterization, for each beam	0.26	0.23 (total for both beams and both planes)	0.20	Tune uncertainty assumed corre- lated between beams and between planes	4.2.2 + 5.1.2
Non-Gaussian transverse-density distri- butions	5.60	B*B (or COMBI) simulations	0.13	0.22	0.30	Simulated for $N_{\text{NSIP}} = 0$, extrapolated to $N_{\text{NSIP}} \ge 1$ using Eq. (42)	4.3 + 5.2.1
Beam ellipticity at the scanning IP	5.60	B*B (or COMBI) simulations. Uncertainty scaled linearly from ξ_R to ξ_{sim}		0.03 (for all values of NNSIP)		Simulated for $\xi_R \le 4.2 \times 10^{-3}$, $0.7 < \Sigma_y / \Sigma_x < 1.4$	4.4 + 5.2.2
Non-zero crossing angle	≤ 5.60	COMBI simulations		$< 0.01^*$ (for all values of NNSIP)		For $\theta_c \leq 10 \mu \text{rad}^*$	4.5 + 5.2.3
				< 0.02 (for all values of NNSIP)		For $\theta_c \leq 150 \mu rad$	
Beam-beam imbalance	5.60	B*B and COMBI simulations	0.016^{*}	0.012*	0.008^{*}	For $\sigma_2 / \sigma_1 > 0.95^*$	4.7
			0.059	0.045	0.032	For $\sigma_2 / \sigma_1 > 0.90$	+
			0.136	0.104	0.072	For $\sigma_2 / \sigma_1 > 0.85$	5.2.4
Multiple IPs:							
Phase advance	5.60	COMBI (or B*B) simulations	0	< 0.20 (for $N_{\rm NSIP}$) >	0)	Worst case: arbitrary phase advances between IPs	4.6.4 +
Multi-IP tune shift	5.60	Vary p_1 in Eq. (42) by $\pm 15\%$ in single-IP simulations. Ignore if using multi-IP simulation	0	0.05	0.09		4.6.5 + 5.3
Long-range encounters	-	None at the scanning IP during <i>pp vdM</i> scans at the LHC		_			5.4.1
Lattice non-linearities	-	COMBI simulations, with sextupoles and octupoles included		0.01* (for all values of NNSIP) 0.03 (for all values of NNSIP)		For $E_B \ge 6.5 \text{TeV}^*$ at lower energies	5.4.2
Numerical accuracy of parameterization	-			< 0.10 (for all values of NNSIP)		Ignore if using simulation rather than parameterization	5.4.3
Total uncertainty	5.60	Uncertainties summed in quadrature	±0.32	± 0.41	±0.46	% of $\sigma_{\rm vis}$	5.5
Total b-b correction	5.60	Parameterization (Sects. 4.2.3 and 4.6.5)	+0.52	+0.86	+1.17	% of $\sigma_{\rm vis}$	5.5

9/3/24

17

Page

of

52

Backup – BB + linear coupling resonance

 At smaller separations the (positive) bias is slightly reduced, at larger separations the magnitude of the negative bias is strongly reduced

Bias from beam-beam and uncorrected coupling with $C^- = 16 \times 10^{-3}$

CÉRN

Backup – BB experiment – COMBI vs. synchrotron light monitor for transverse beam size

CÉRN