

Impact of beam-beam effects on the transverse LHC beam halo

ICFA mini workshop – Beam-Beam Effects in Circular Colliders

02 – 05.09.2024, EPFL, Lausanne, CH

Authors: M. Rakic, P. Hermes, <u>C. E. Montanari</u>, S. Redaelli, G. Sterbini

Thanks to LHC OP for the precious support!

Introduction

- High stored energy of LHC particle beams (approx. 700MJ for HL-LHC!)
- LHC Collimation system:
 - Multi-stage system, mainly located in IR7
 - Essential for machine protection
 - Different collimation types for different purposes
 - TCP: primary collimators closest to main beam
 - Secondary and tertiary collimators remove particle showers, protect IPs, reduce background
 - Collimation Hierarchy to be respected to ensure safe operation

Figure – LHC collimation system layout [1]

LHC 2023 operation, a complex cycle!

 $\sigma_{\rm coll} = \sqrt{\beta \epsilon}$

	E [GeV]	Optics	ß* 1/5 [m]	ß* 2 [m]	ß* 8 [m]	X 1 [µrad] V	X 5 [µrad] H	X 2 [µrad] V	X 8 [µrad] H →V
Injection	450	1	11	10	10	-170	170	170	-170
Ramp	450-6800	1-20	11 → 2	10	10 → 2	- 170 → -135	170 ightarrow 135	170 ightarrow 200	-170 → -200
Flat Top	6800	20	2	10	2	-135	135	200	-200
Squeeze	6800	20-22	$2 \rightarrow 1.2$	10	2	-135	135	200	-200
LHCb Rotation	6800	22	1.2	10	2	-135	135	200	H: $-200 \rightarrow 0$ V: $0 \rightarrow 200$
Tune Change	6800	22	1.2	10	2	-135	135	200	200
Adjust	6800	22	1.2	10	2	-135	135	200	200
Large Levelling	6800	23-34	1.2 ightarrow 0.6	10	2	-135 → -145	135 ightarrow 145	200	200
Levelling	6800	34-43	0.6 ightarrow 0.3	10	2	-145 → -160	145 ightarrow 160	200	200

- Collision in four Interaction Points (IPs):
 - High Luminosity Experiments in IP1 (ATLAS) and IP5 (CMS)
 - Lower Luminosities in IP2 (ALICE) and IP8 (LHCb)
- Cycling through multiple optics, each yielding different challenges (and BB effects during levelling!)

LHC collimation along the cycle

		Betatron			Off-momentum Dump			Triplet prot.				Physics debris					
		IR7 [σ]		IR3 [σ]		Dump [σ]		TCT [σ]				TCL [σ]					
		ТСР	TCSG	TCLA	ТСР	TCSG	TCLA	TCDQ	TCSP	1	2	5	8	4	5	6	
Injection		5.7	6.7	10	8	9.3	12	8	7.5	13	13	13	13	-	-	-	
Ramp		\downarrow	Ļ	10	Ļ	Ļ	Ļ	\downarrow	\downarrow	\downarrow	Ļ	Ļ	Ļ	-	-	-	
Flat Top		5	6.5	10	15	18	20	7.3	7.3	18	37	18	18	-	-	-	
Squeeze		5	6.5	10	15	18	20	7.3	7.3	\downarrow	37	\downarrow	18		-		
LHCb Rot	ation	5	6.5	10	15	18	20	7.3	7.3	9.35	37	9.35	\downarrow	-	-	-	
Tune Char	nge	5	6.5	10	15	18	20	7.3	7.3	9.35	37	9.35	11.5	-	-	-	
Adjust		5	6.5	10	15	18	20	7.3	7.3	9.35	37	9.35	11.5	-	-	-	
Levelling	120	5	6.5	10	15	18	20	7.3	7.3	\downarrow	37	\downarrow	11.5	\downarrow	\downarrow	Ļ	
	60	5	6.5	10	15	18	20	7.3	7.3	8.5	37	8.5	11.5	\downarrow	\downarrow	\downarrow	
	30	5	6.5	10	15	18	20	7.3	7.3	8.5	37	8.5	11.5	17	42	30	

- Collimator settings = functions of time synch-ed to the power converters, RF, orbit feedback,...
- Regular monitoring to detect early on potential deviations from reference performance
- All settings beam-based: dedicated alignment sections in initial commissioning

Beam halo and its importance

- Transverse beam halo defined as particle population above 3 σ_N
- Measured since LHC start: heavily populated halo, up to 5% [5]
- Halo and fast-failure scenarios:
 - Danger to collimation system
 - Danger of magnet quench
 - General concern on machine availability from loss spikes if halos too populated
- Need to understand the mechanisms of halo formation and evolution

How is the halo measured in the LHC?

- Beam-based alignment
 - Precise collimator measurement of collimator gap when touching the beam
 - Important for positioning the beam centre
- Destructive scrapings with collimators:
 - Inward scraping in steps
 - Using TCPs
- Instruments used:
 - Beam current transformer (BCT) - beam intensity (per bunch or total)
 - Beam loss monitors (BLM) local losses

Figure – Illustration of halo scraping with TCPs and responses of BLM and BCT devices.

Measurement analysis

- Example: data from BCT \longrightarrow beam halo [% total] at fixed amplitude $[\sigma_N]$
- Emittances:
 - Measured: expected beam size
 - Nominal: by convention 3.5 $\mu mrad$ in LHC and 2.5 $\mu mrad$ in HL-LHC

Figure – Extracting halo from the raw BCT signal and TCP positions.

Measurement overview

- Overview of end-of-fill LHC Run 3 halo measurements:
 - Taken after beams spent hours in collision
- Range of measured halo populations

Date	Fill	B1H	B1V	B2H	B2V					
		halo [% of total intensity] at 3.5o _N								
06/10/2022	8233	0.1%	0.1%	0.1%	0.3%					
25/10/2022	8313	0.4%	0.6%	< 0.1%	1.5%					
12/11/2022	8387	0.9%	0.6%	0.2%	0.7%					
20/06/2024	9808	0.2%		0.1%						
23/08/2024	10048	0.5%	<0.1%	0.2%	0.2%					

- This talk: focus on scraping done on Fill No. 8233

Measurement overview

- Beam conditions:
 - 200 bunches, 7×10^9 ppb
 - 10h in collisions nominal LHC $\beta*$ luminosity levelling
 - Reached nominal 2022 end of levelling (IP1/5 β *=30cm, IP2 β *=10m, IP8 β *=2m)
 - 350 A octupole currents
- Different collision scheme for different bunches within trains
 - Different head-on (HO) and long-range (LR) beam-beam forces
- Measurement at end of fill
 - FastBCT data for reconstructing **bunch-per-bunch** halo population

Figure – Fill scheme, 2 trains of 12b (0-1) and 4 trains of 48b (2-5).

Influence of collisions on halo

- B2H halo per bunch above 3.2 $\sigma_{\!\scriptscriptstyle \rm N}$
- Expected behaviour: colliding vs non-colliding bunches
- Intra-train halo differences

Influence of collisions on halo

Bunch-by-bunch halo above 3.2 $\sigma_{\!\scriptscriptstyle \rm N}$

Influence of collisions on halo

• Visible decrease of halo when colliding in IP2

Figure – Bunch-by-bunch halo left in B2H and right in B2V.

Bunch-by-bunch halo and IP collision pattern - B2H

13

Is this visible also in B1?

- Patterns observed in B2 are not present in B1
- Source of differences still uncertain

Bunch-by-bunch halo and IP collision pattern - B1H

Summary of key observations

- Difference in bunch halo population depending on collision pattern
- Unexpected differences between B1 and B2
- Possibly caused by different non-linear interaction with magnetic imperfections?
- Can we replicate this in simulations?

Figure – Bunch-by-bunch halo left in B2H and right in B2V.

Single-particle tracking with Xsuite

- Is the effect of IP2 BB effect in B2 visible in a singleparticle tracking simulation?
- Xsuite weak-strong model used
- 2022 LHC optics, end of leveling, β^* =30cm
- Octupoles @350 A
- Machine imperfections not included
- Different BB long-range and BB head-on setup
 - A. All IPs except for IP2
 - B. All IPs
- Nominal beam halo sampled between 4 and 5 $\sigma_{\scriptscriptstyle N}$ as initial condition
- Betatron cut at 5 $\sigma_{\scriptscriptstyle N}$
- GPU tracking of 10⁵ particles up to 10⁶ turns (~90 seconds of LHC operation)

Xsuite

Not shown here: BB integration in full collimation simulations – F. Van der Veken talk

A difficult observation

- Beam halo dynamics simulation is an open challenge
- High statistics required
 - Achievable thanks to XSuite GPU implementation
 - Only requires deployment on more GPU hardware
- Longer simulation timescales required
 - Tracking took almost 2 days on a Nvidia A100
 - Scaling up to hours of LHC operation currently unfeasible

Amplify to observe

- Explorative attempt for visualizing IP2 BB effect
- Increase of BB intensity by factor 2 on all IPs
- Stronger degradation at reachable timescales
- Difference between resulting halo populations
- Possible next steps:
 - Increase number of turns in dedicated campaign
 - Focus on understanding differences between B1 and B2
 - Use extrapolation models / scale-laws to probe long-term dynamics

Faster depletion of (B)

Approaches under consideration:

• Lyapunov exponent: measurement of an orbit's reaction to an initial perturbation

 $\lambda = \lim_{t o \infty} \lim_{|\delta \mathbf{Z}_0| o 0} rac{1}{t} \ln rac{|\delta \mathbf{Z}(t)|}{|\delta \mathbf{Z}_0|}$

- $\lambda = 0$ Non-chaotic
- $\lambda > 0$ Chaotic
- Can be probed via Choas Indicators (e.g. Fast Lyapunov indicator FLI)
- Possible extension of "standard" dynamic aperture simulations
- Good observables for constructing extrapolation models

[sigma]

2

x [sigma]

6.0

- 5.5

5.0 su

3.5

Approaches under consideration: Chaos Indicators

• Small differences in chaotic structures in the phase space may be used as base for long-term extrapolation models/scale-laws

Approaches under consideration: Non-linear diffusive models Diffusion Measurements and Fit

• Describe the transverse beam distribution evolution as a Fokker-Plank model:

$$\frac{\partial \rho(I,t)}{\partial t} = \frac{1}{2} \frac{\partial}{\partial I} D(I) \frac{\partial}{\partial I} \rho(I,t)$$

- Physics-based functional shape for the diffusion coefficient
- (Ideally) relate the presence of chaoitc regions to diffusion-like dynamics observed in experiments

Conclusions

- Understanding of beam-halo dynamics is an open problem, critical for present and future LHC operation
- Multiple measurements of beam-halo correlate halo depletion to different BB effects
- Measurements of halo differences with and without various BB contributions offer great experimental data
- BB-halo interaction will become of more interest in HL-LHC when considering, e.g. Crab-cavity failure scenarios
- Simulation efforts ongoing, open to suggestions!

References

[1] - Data-driven cross-talk modelling of beam losses in LHC collimators, G. Azzopardi, B. Salvachua and G. Valentino, Phys. Rev. Accel. Beams, 2019.

[2] - Optimization of tail depletion efficiency in pulsed operation of the hollow electron lens, P. Hermes, Non-Linear Beam Dynamics WG Meeting, 24.06.2021.

[3] - Modelling and measurements of bunch profiles at the LHC, S. Papadopoulou et al., J. Phys.: Conf. Ser. 874/1, 2016.

[4] - A study of beam-beam effects in hadron colliders with a large number of bunches, T. Pieloni, Ecole Polytechnique, Lausanne, 2008

[5] - Probing LHC halo dynamics using collimator loss rates at 6.5 TeV. A. Gorzawski, et al., Phys. Rev. Accel. Beams 23, 044802 – Published 27 April 2020.

[6] - Recent measurements and analyses of the beam-halo dynamics at the CERN LHC using collimator scans. C. E. Montanari, et al. in Proc. IPAC'23, Venice, Italy, May 2023

[7]- Performance analysis of indicators of chaos for nonlinear dynamical systems. A. Bazzani, et al. Physical Review E 107.6 – Published 22 June 2023