

Impact of beam-beam effects on the transverse LHC beam halo

ICFA mini workshop – [Beam-Beam Effects in Circular Colliders](https://indi.to/3n7WJ)

02 – 05.09.2024, EPFL, Lausanne, CH

Authors: M. Rakic, P. Hermes, C. E. Montanari, S. Redaelli, G. Sterbini

Thanks to LHC OP for the precious support!

Introduction

- High stored energy of LHC particle beams (approx. 700MJ for HL-LHC!)
- LHC Collimation system:
	- Multi-stage system, mainly located in IR7
	- Essential for machine protection
	- Different collimation types for different purposes
		- TCP: primary collimators closest to main beam
		- Secondary and tertiary collimators remove particle showers, protect IPs, reduce background
		- Collimation Hierarchy to be respected to ensure safe operation

Figure – LHC collimation system layout [1]

LHC 2023 operation, a complex cycle!

 $X 1$ [µrad] $X 5$ [µrad] $X 2$ [µrad] $X 8$ [µrad] Optics $|6 \times 1/5$ [m] $|6 \times 2$ [m] $|6 \times 8$ [m] E [GeV] v $H \rightarrow V$ н **Injection** 450 11 10 10 -170 170 170 -170 $10 \rightarrow 2$ -170 \rightarrow -135 170 \rightarrow 135 170 \rightarrow 200 -170 \rightarrow -200 450-6800 $1 - 20$ $11 \rightarrow 2$ 10 **Ramp Flat Top** 6800 20 $2¹$ 10 -135 135 200 -200 $\overline{2}$ $20 - 22$ $2 \rightarrow 1.2$ 10 **Squeeze** 6800 $\overline{2}$ -135 135 200 -200 $H: -200 \rightarrow 0$ **LHCb Rotation** 6800 1.2 22 10 $\overline{2}$ -135 135 200 V: $0 \rightarrow 200$ **Tune Change** 1.2 -135 135 6800 22 10 200 200 $\overline{2}$ 6800 22 1.2 10 $\overline{2}$ **Adjust** -135 135 200 200 23-34 $1.2 \rightarrow 0.6$ $-135 \rightarrow -145$ 135 \rightarrow 145 **Large Levelling** 6800 10 $\overline{2}$ 200 200 $-145 \rightarrow -160$ 145 \rightarrow 160 **Levelling** 6800 $34-43$ 0.6 \rightarrow 0.3 10 $\overline{2}$ 200 200

- Collision in four Interaction Points (IPs):
	- High Luminosity Experiments in IP1 (ATLAS) and IP5 (CMS)
	- Lower Luminosities in IP2 (ALICE) and IP8 (LHCb)
- Cycling through multiple optics, each yielding different challenges (and BB effects during levelling!)

 $\sigma_{\rm coll}=\sqrt{\beta\epsilon}$

LHC collimation along the cycle

- Collimator settings = functions of time synch-ed to the power converters, RF, orbit feedback,…
- Regular monitoring to detect early on potential deviations from reference performance
- All settings beam-based: dedicated alignment sections in initial commissioning

Beam halo and its importance

- Transverse beam halo defined as particle population above 3 σ_{N}
- Measured since LHC start: heavily populated halo, up to 5% [5]
- Halo and fast-failure scenarios:
	- Danger to collimation system
	- Danger of magnet quench
	- General concern on machine availability from loss spikes if halos too populated
- Need to understand the mechanisms of halo formation and evolution

How is the halo measured in the LHC?

- Beam-based alignment
	- Precise collimator measurement of collimator gap when touching the beam
	- Important for positioning the beam centre
- Destructive scrapings with collimators:
	- Inward scraping in steps
	- Using TCPs
- Instruments used:
	- Beam current transformer (BCT) - beam intensity (per bunch or total)
	- Beam loss monitors (BLM) local losses

Figure – Illustration of halo scraping with TCPs and responses of BLM and BCT devices.

Measurement analysis

- Example: data from BCT \longrightarrow beam halo [% total] at fixed amplitude $[\sigma_{\sf N}]$
- Emittances:
	- Measured: expected beam size
	- Nominal: by convention 3.5 µmrad in LHC and 2.5 µmrad in HL-LHC

Figure – Extracting halo from the raw BCT signal and TCP positions. ⁷

Measurement overview

- Overview of end-of-fill LHC Run 3 halo measurements:
	- Taken after beams spent hours in collision
- Range of measured halo populations

- This talk: focus on scraping done on Fill No. 8233

Measurement overview

- Beam conditions:
	- 200 bunches, 7×10^9 ppb
	- 10h in collisions nominal LHC β*luminosity levelling
	- Reached nominal 2022 end of levelling (IP1/5 β *=30cm, IP2 β *=10m, IP8 β *=2m)
	- 350 A octupole currents
- Different collision scheme for different bunches within trains
	- Different head-on (HO) and long-range (LR) beam-beam forces
- Measurement at end of fill
	- FastBCT data for reconstructing bunch-per-bunch halo population

Figure – Fill scheme, 2 trains of 12b (0-1) and 4 trains of 48b (2-5).

Influence of collisions on halo

- B2H halo per bunch above 3.2 σ
- Expected behaviour: colliding vs non-colliding bunches
- Intra-train halo differences

Influence of collisions on halo

Bunch-by-bunch halo above 3.2 σ_{N}

Influence of collisions on halo

• Visible decrease of halo when colliding in IP2

Figure – Bunch-by-bunch halo left in B2H and right in B2V.

Bunch-by-bunch halo and IP collision pattern - B2H

Is this visible also in B1?

- Patterns observed in B2 are not present in B1
- Source of differences still uncertain

Bunch-by-bunch halo and IP collision pattern - B1H

Summary of key observations

- Difference in bunch halo population depending on collision pattern
- Unexpected differences between B1 and B2
- Possibly caused by different non-linear interaction with magnetic imperfections?
- Can we replicate this in simulations?

Figure – Bunch-by-bunch halo left in B2H and right in B2V.

Single-particle tracking with Xsuite

- Is the effect of IP2 BB effect in B2 visible in a singleparticle tracking simulation?
- Xsuite weak-strong model used
- 2022 LHC optics, end of leveling, β^* =30cm
- Octupoles @350 A
- Machine imperfections not included
- Different BB long-range and BB head-on setup
	- A. All IPs except for IP2
	- B. All IPs
- Nominal beam halo sampled between 4 and 5 σ_{N} as initial condition
- Betatron cut at 5 $\sigma_{\rm M}$
- GPU tracking of 10^5 particles up to 10^6 turns (~90 seconds of LHC operation)

suite

Not shown here: BB integration in full collimation simulations – F. Van der Veken talk

A difficult observation

- Beam halo dynamics simulation is an open challenge
- High statistics required
	- Achievable thanks to XSuite GPU implementation
	- Only requires deployment on more GPU hardware
- Longer simulation timescales required
	- Tracking took almost 2 days on a Nvidia A100
	- Scaling up to hours of LHC operation currently unfeasible

Amplify to observe

- Explorative attempt for visualizing IP2 BB effect
- Increase of BB intensity by factor 2 on all IPs
- Stronger degradation at reachable timescales
- Difference between resulting halo populations
- Possible next steps:
	- Increase number of turns in dedicated campaign
	- Focus on understanding differences between B1 and B2
	- Use extrapolation models / scale-laws to probe long-term dynamics

Faster depletion of (B)

Approaches under consideration: Chaos Indicators

 $\mathbf{x}(t) + \delta(t)$

 $\mathbf{x}(t)$

 $\|\boldsymbol{\delta}(0)\|$

• Lyapunov exponent: measurement of an orbit's reaction to an initial perturbation

 $\lambda = \lim_{t\rightarrow \infty} \lim_{|\delta \mathbf{Z}_0| \rightarrow 0} \frac{1}{t} \ln \frac{|\delta \mathbf{Z}(t)|}{|\delta \mathbf{Z}_0|}$

- $\lambda = 0$ Non-chaotic
- $\lambda > 0$ Chaotic
- Can be probed via Choas Indicators (e.g. Fast Lyapunov indicator FLI)
- Possible extension of ''standard'' dynamic aperture simulations
- Good observables for constructing extrapolation models

2

x [sigma]

 10^{-}

 -5.5

5.

d.

log10(stable turns)

 3.5

 -3.0 $\frac{1}{2}$

Approaches under consideration: Chaos Indicators

• Small differences in chaotic structures in the phase space may be used as base for long-term extrapolation models/scale-laws

Approaches under consideration: Non-linear diffusive models Diffusion Measurements and Fit

• Describe the transverse beam distribution evolution as a Fokker-Plank model:

$$
\frac{\partial \rho(I,t)}{\partial t} = \frac{1}{2} \frac{\partial}{\partial I} D(I) \frac{\partial}{\partial I} \rho(I,t)
$$

- Physics-based functional shape for the diffusion coefficient
- (Ideally) relate the presence of chaoitc regions to diffusion-like dynamics observed in experiments

Conclusions

- Understanding of beam-halo dynamics is an open problem, critical for present and future LHC operation
- Multiple measurements of beam-halo correlate halo depletion to different BB effects
- Measurements of halo differences with and without various BB contributions offer great experimental data
- BB-halo interaction will become of more interest in HL-LHC when considering, e.g. Crab-cavity failure scenarios
- Simulation efforts ongoing, open to suggestions!

References

[1] - Data-driven cross-talk modelling of beam losses in LHC collimators, G. Azzopardi, B. Salvachua and G. Valentino, Phys. Rev. Accel. Beams, 2019.

[2] - Optimization of tail depletion efficiency in pulsed operation of the hollow electron lens, P. Hermes, Non-Linear Beam Dynamics WG Meeting, 24.06.2021.

[3] - Modelling and measurements of bunch profiles at the LHC, S. Papadopoulou et al., J. Phys.: Conf. Ser. 874/1, 2016.

[4] - A study of beam-beam effects in hadron colliders with a large number of bunches, T. Pieloni, Ecole Polytechnique, Lausanne, 2008

[5] - Probing LHC halo dynamics using collimator loss rates at 6.5 TeV. A. Gorzawski, et al., Phys. Rev. Accel. Beams 23, 044802 – Published 27 April 2020.

[6] - Recent measurements and analyses of the beam-halo dynamics at the CERN LHC using collimator scans. C. E. Montanari, et al. in Proc. IPAC'23, Venice, Italy, May 2023

[7]- Performance analysis of indicators of chaos for nonlinear dynamical systems. A. Bazzani, et al. Physical Review E 107.6 – Published 22 June 2023