
ICFA mini workshop BB24: pyTRAIN Michi Hostettler

pyTRAIN
a modern TRAIN implementation

Michi Hostettler, Xavier Buffat, Tobias Persson,
Tatiana Pieloni, Jorg Wenninger

ICFA mini workshop BB24: pyTRAIN Michi Hostettler

a brief history TRAIN

● iteratively find self-consistent closed orbits

○ under the presence of beam-beam effects

○ in the many-bunch case ("trains")

○ using second-order sectormaps from MAD-X

○ “soft-Gaussian” approach

2

W. Herr, "Features and implications of different LHC crossing

schemes", LHC project report 628, 2003.

● pioneered by E. Keil, F.C. Iselin for LEP

● applied to LHC design by W. Herr, H. Grote

○ showed clear advantage of V-H alternating

crossing scheme over H-H crossing

○ showed "PACMAN" effects (bunches missing

long-range encounters due to kicker gaps)

○ later further extended by T. Pieloni,

A. Gorzawski, M. Hostettler, X. Buffat, A. Ribes

ICFA mini workshop BB24: pyTRAIN Michi Hostettler

TRAIN in a nutshell

3

twiss output

with beam-beam markers

second-order maps Ki, Rij, Tijk

between beam-beam markers

survey

(design separation)

input (from MAD-X)

find initial closed orbit

(no beam-beam)

establish collision schedule
(which bunches encounter where?)

preparation

insert beam-beam kick

maps for all bunches
(based on current closed orbits)

find new closed orbits

for all bunches

main iteration loop

NO

convergence?
(|coN-1 - coN| < ε

for all bunches)

analyze final second-order

maps: tunes, chromaticities

write output

post-processing

YES

ICFA mini workshop BB24: pyTRAIN Michi Hostettler

historic TRAIN limitations

● ltrain.f, one flat file, 12145 lines of FORTAN-77

○ local implementation of all numeric primitives (linear algebra, …)

■ partially copied from historic MAD-8 or MAD-X code

■ not always numerically stable or the most efficient

○ no version control, no changelog (ktrain, ltrain, mtrain, …)

4

● historic input formats

○ flat files of records/numbers

read(..., *) in

○ MAD-X maps: historic scripts

● limited extensibility & scriptability

○ today most analysis is done in python / Jupyter

○ first version of pyTRAIN: TRAIN python interface

■ limited to running TRAIN in full, no control over the process, output only for BB points

ICFA mini workshop BB24: pyTRAIN Michi Hostettler 5

the FORTRAN TRAIN code
served us well for many years

now it is time to move on

ICFA mini workshop BB24: pyTRAIN Michi Hostettler

pyTRAIN: a modern re-implementation

● complete re-implementation in python

● using numpy and scipy primitives

○ linear algebra, Faddeeva function, …

● interface to MAD-X via cpymad

○ reading MAD-X output from files also possible

6

https://gitlab.cern.ch/mihostet/pytrain/-/tree/pure-python

● total 1050 lines of python code

○ 44 lines of Cython: concatenation of second-order maps

● performance similar to FORTAN-77 code

○ slightly slower - not the first priority

○ few minutes to solve full LHC with ~2400 bunches

https://gitlab.cern.ch/mihostet/pytrain/-/tree/pure-python

ICFA mini workshop BB24: pyTRAIN Michi Hostettler

pyTRAIN - basic usage

7

https://gitlab.cern.ch/mihostet/pytrain/-/tree/pure-python

from pytrain.fileio import read_train_files

from pytrain.machine import FillingScheme

from pytrain.solver import solve_train

read survey, twiss & sector map input files (alternatively use included cpymad utils)

machine, twiss_b1, twiss_b2, maps_b1, maps_b2 = read_train_files('train-output')

construct a "filling scheme": bunch intensities & normalized emittances

filling_scheme = FillingScheme(int_b1, int_b2, emit_b1x, emit_b1y, emit_b2x, emit_b2y)

solve self-consistent orbits with BBLR interactions

result = solve_train(machine, filling_scheme, twiss_b1, maps_b1, twiss_b2, maps_b2)

bunch-by-bunch closed orbit at any element

co_b1_x, co_b1_y = result.bunch_positions_b1('MKIP5')

co_b2_x, co_b2_y = result.bunch_positions_b2('MKIP5')

https://gitlab.cern.ch/mihostet/pytrain/-/tree/pure-python

ICFA mini workshop BB24: pyTRAIN Michi Hostettler

benchmarking: TRAIN vs pyTRAIN

8

Beam 1 H

Beam 2 H

Beam 1 V

Beam 2 V

ICFA mini workshop BB24: pyTRAIN Michi Hostettler

beam-beam long-range effects in LHC

● ~2400 bunches spaced by 25ns

○ longer gaps for kicker rise times

● 4 interaction regions with

common vacuum chamber

○ long-range beam-beam encounters

○ "pacman" effects due to kicker

gaps (missing LR encounters)

○ "super-pacman" effects as IRs not

symmetric (missing head-on colls.)

● luminosity levelling by beta* and

separation: changing optics

9

25ns bunch slot

b
u
n
c
h
 in

te
n
s
it
y
 [
p

ro
to

n
s
 p

e
r

b
u
n
c
h
]

more details in talk of T. Pieloni

ICFA mini workshop BB24: pyTRAIN Michi Hostettler

luminous centroid position at experiments

10

● experiments measure the primary vertex positions ("beam spot")

○ offline reconstructed from tracker data

○ "luminous region" size

○ "luminous centroid" position

○ high-statistics data collected

during calibration sessions

■ interferes with physics data taking

● "luminous centroid":

center of the overlap region

○ average position of the two beams

○ measured bunch-by-bunch

ICFA mini workshop BB24: pyTRAIN Michi Hostettler

ATLAS luminous centroid position

11

Preliminary BeamSpot data courtesy of the ATLAS collaboration. LHC fill 9653 / ATLAS run 476033, 2024-05-28

ICFA mini workshop BB24: pyTRAIN Michi Hostettler

emittance scans - beam separations

12

● beam separation scans ("mini-VdM")

○ luminosity vs. separation fitted with Gaussian

bunch-by-bunch

○ done regularly in LHC for emittances and

tracking of luminosity monitor degradation

● fit centre gives bunch-by-bunch beam separation

details in: M. Hostettler et al., "Luminosity scans for beam diagnostics", PRAB 21, 2018

https://link.aps.org/doi/10.1103/PhysRevAccelBeams.21.102801

ICFA mini workshop BB24: pyTRAIN Michi Hostettler

emittance scans - beam separations

13

emittance scans in CMS, at beta*=1.2m. Luminosity data courtesy of the CMS collaboration. LHC fill 10066, 2024-08-28

ICFA mini workshop BB24: pyTRAIN Michi Hostettler

beam positions at wire scanners

● wire scans regularly taken during LHC injection

○ first 108 bunches only (scanner intensity limit)

○ bunch positions from centre of Gaussian fit

○ per-beam, per-plane, per-bunch data

● no head-on collisions, but long-range encounters present!

14

ICFA mini workshop BB24: pyTRAIN Michi Hostettler

beam positions at wire scanners

15

ICFA mini workshop BB24: pyTRAIN Michi Hostettler

from orbits to optics parameters

● classic TRAIN output: orbits, tunes, chromaticities per bunch

● internal calculation based on second-order maps (per bunch)

○ the maps contain all optics information up to second order!

➜ calculate twiss parameters & dispersion - for any bunch, at any location

■ based on MAD-X code translated to python

■ coupling not yet treated - future improvement

16

ICFA mini workshop BB24: pyTRAIN Michi Hostettler

iteration processors

17

insert beam-beam kick

maps for all bunches
(based on current closed orbits)

find new closed orbits

for all bunches

main iteration loop

NO

YES

convergence?
(|coN-1 - coN| < ε

for all bunches)

iteration processor
Callable[BunchMaps]

● beam-beam effects can interplay with other

machine systems

○ e.g. feedback corrections

○ self-consistent treatment

needs to hook into TRAIN

iteration loop

● iteration processors

○ callback per iteration after new beam-beam

maps are established

○ can insert / mutate bunch maps

● pre-defined: mean orbit correction (SVD)

○ simulates the effect of a bunch-average

feedback

ICFA mini workshop BB24: pyTRAIN Michi Hostettler

conclusions

● pyTRAIN: a reimplementation of TRAIN in modern python

○ using numpy / scipy primitives where possible

○ interface to MAD-X via cpymad

○ scriptable from python

● results look promising

○ reproduces well the BBLR patterns observed in LHC

● allows for novel features

○ orbit anywhere in the ring (not just BB interaction points)

○ twiss parameters anywhere in the ring

○ iteration processors

○ extensible in the future!

18

ICFA mini workshop BB24: pyTRAIN Michi Hostettler

future improvements
● physics improvements

○ finite bunch length effect on the effective beam size due to beam angles

■ A. Babaev, https://arxiv.org/abs/2104.02595

○ fully self-consistent beam sizes, iterating on perturbed twiss parameters

○ treatment of beam-beam introduced coupling

● validation & application to other machines

○ currently only tested on LHC - any collaborators welcome!

● integration with Xsuite

○ at least for input map generation

○ install beam-beam elements at final separation for tracking?

● performance

○ nice to have: clean and readable code has higher priority

○ possible synergy with Xsuite integration (fast primitives and data structures)

19

https://arxiv.org/abs/2104.02595

