

Including beam-beam effects in collimation studies for the FCC-ee

G. Broggi^{1,2,3}, A. Abramov², K. André², M. Boscolo³, R. Bruce², X. Buffat², M. Hofer², P. Kicsiny^{2,4}, S. Redaelli², T. Pieloni⁴

¹ Sapienza University of Rome, Italy
 ³ INFN-LNF, Frascati, Italy

² CERN, Meyrin, Switzerland
 ⁴ LPAP, EPFL, Lausanne, Switzerland

ICFA mini workshop on Beam-Beam Effects in Circular Colliders 2024 – Lausanne, Switzerland, 05/09/2024

Many thanks to:

A. Lechner, S. Marin, M. Migliorati, L. Nevay, G. Iadarola, A. Perillo-Marcone, L. van Riesen-Haupt, F. Zimmermann

Introduction

- Collimation for the FCC-ee
- FCC-ee collimation system
- Collimation and beam-beam effects
- FCC-ee collimation simulations
- FCC-ee Z mode spent beam losses
- Addition of tertiary collimators for local protection
- Summary and next steps

Introduction

- Collimation for the FCC-ee
- FCC-ee collimation system
- Collimation and beam-beam effects
- FCC-ee collimation simulations
- FCC-ee Z mode spent beam losses
- Addition of tertiary collimators for local protection
- Summary and next steps

3

Collimation for the FCC-ee

- FCC-ee is the FCC first stage e⁺e⁻ collider
 - > 90.7 km circumference, tunnel compatible with FCC-hh
 - 4 beam operation modes, optimized for production of different particles:
 Z (45.6 GeV), W (80 GeV), H (120 GeV), ttbar (182.5 GeV)
- FCC-ee presents unique challenges
 - Unprecedented stored beam energy for a lepton collider: up to 17.5 MJ in the Z operation mode (45.6 GeV)
 - Highly destructive beams: collimation system indispensable
 - > The main roles of the collimation system are:
 - Reduce background in the experiments
 - Protect the machine from unavoidable losses
 - > Two types of collimation currently foreseen for the FCC-ee:
 - Beam halo (global) collimation
 - Synchrotron Radiation (SR) collimation around the IPs
 - Secondary particle shower absorbers: under study (S. Marin, A. Lechner)

Comparison of lepton colliders

Damage to coated collimator jaw due to accidental beam loss in the SuperKEKB – T. Ishibashi (talk)

4

FCC-ee halo collimation system

- Dedicated halo collimation system in PF ٠
 - Dedicated collimation optics (M. Hofer)
 - Two-stage betatron and off-momentum collimation system in one insertion
 - Ensure protection of the aperture bottlenecks in different conditions
 - Aperture bottleneck at Z: 14.6σ (H plane), 84.2σ (V plane)
 - First collimator design for cleaning performance
 - Ongoing studies for optimizing the collimator design (G. Broggi <u>IPAC'24 paper</u>)

FCC-ee beam halo collimator parameters and settings

Name	Plane	Material	Length [cm]	Gap [σ]	Gap [mm]	δ _{cut} [%]
TCP.H.B1	н	MoGr	25	11	6.7	8.9
TCP.V.B1	V	MoGr	25	65	2.4	-
TCS.H1.B1	н	Мо	30	13	3.8	6.7
TCS.V1.B1	V	Мо	30	75	2.5	-
TCS.H2.B1	н	Мо	30	13	5.1	90.6
TCS.V2.B1	V	Мо	30	75	3.0	-
TCP.HP.B1	н	MoGr	25	18.5	4.2	1.3
TCS.HP1.B1	Н	Мо	30	21.5	4.6	2.1
TCS.HP2.B1	Н	Мо	30	21.5	16.8	1.6

Further materials will be studied

M. Hofer

L_{SSS} = 1.4 km

Collimation insertion

(Coll

IPB (Inj./Extr.)

 $= 9.6 \ km$

IPD

(Exp.)

(Exp.)

FCC-ee

4IP

layout

IPG (Exp.)

(RF)

(RF)

 $L_{LSS} = 2.1 \ km$

(Exp.

FCC-ee SR collimation system

Synchrotron radiation collimators around the IPs

- ➢ 6 movable collimators and 2 fixed masks upstream of the IPs
- > Designed to reduce detector backgrounds and power loads in the inner beampipe due to photon losses

FCC-ee SR collimators parameters and settings

Name	Plane	Material	Length [cm]	Gap [σ]	Gap [mm]
TCR.H.WL.B1	Н	W	10	14.1	17.0
TCR.H.C3.B1	V	W	10	13.5	16.5
TCR.V.C0.B1	V	W	10	80.1	8.0
TCR.H.C0.B1	н	W	10	13.0	16.2
TCR.V.C2.B1	V	W	10	82.0	8.0
TCR.H.C2.B1	Н	W	10	13.1	16.0

• More details in K. André, FCC week 2024 talk

Collimation and beam-beam effects

- Interactions at the IPs have a crucial role in FCC-ee beam dynamics
 - Beamstrahlung, radiative Bhabha scattering, beam-beam kicks
 - > Main contribution to the beam lifetime in nominal operation
 - Can produce distinct beam loss distributions around the ring
- Large effort to model these effects in Xsuite (P. Kicsiny, X. Buffat, T. Pieloni)
 - See talk by P. Kicsiny (FCCIS 23 talk)
 - > EPFL-led effort, part of a CHART-funded FCC software collaboration project
 - Benchmarks show good agreement with established tools
 - > The models are modular and can be combined with other studies
- Goal: integrate beam-beam effects in collimation tracking studies
 - Multi-turn beam dynamics and beam losses of spent beam particles
 - Effect of beam-beam interaction on collimation losses and distributions during collimation tracking

Swiss Accelerato Research and Technology

Introduction

- Collimation for the FCC-ee
- FCC-ee collimation system
- Collimation and beam-beam effects
- FCC-ee collimation simulations
- FCC-ee Z mode spent beam losses
- Addition of tertiary collimators for local protection
- Summary and next steps

8

FCC-ee collimation simulations

- FCC-ee presents unique challenges for collimation simulations
 - Synchrotron radiation and magnet strength adjustment (tapering) to compensate it
 - Complex beam dynamics strong sextupoles in the lattice, strong beam-beam effects
 - Detailed aperture and collimator geometry modelling
 - Electron/positron beam particle-matter interactions
 - Large accelerator system 90+ km beamline
- Xsuite + BDSIM (Geant4) coupling
 - Developed for FCC collimation simulations (A. Abramov, IPAC'22 paper, JINST paper)

- Benchmarked against other simulation codes: MAD-X, pyAT, Sixtrack-FLUKA (A. Abramov) measured data from proton machines: SPS (T. Pugnat), LHC (G. Broggi)
- Xsuite-FLUKA coupling being set up (F. Van der Veken, <u>HB'23 paper</u>, K. Skoufaris, FLUKA team)

Ongoing effort for benchmarking Xsuite-BDSIM with

data from lepton machines (SuperKEKB, DAΦNE)

Introduction

- Collimation for the FCC-ee
- FCC-ee collimation system
- Collimation and beam-beam effects
- FCC-ee collimation simulations
- FCC-ee Z mode spent beam losses
- Addition of tertiary collimators for local protection
- Summary and next steps

FCC-ee Z-mode spent beam losses

- Goal: study collimation with beam-beam integrated
 - Full non-linear lattice
 - Crab-waist
 - Detailed aperture and collimator models
 - Radiation (quantum) and tapering
 - Vertical emittance generation (wiggler)
 - Weak-strong beam-beam, Beamstrahlung, Bhabha scattering in 4 lps
 - Clockwise beam 1 (positrons), 45.6 GeV
 - Track a matched Gaussian beam of 10⁷ macroparticles from first arc dipole after IPA for 500 turns
 - Equilibrium beam-beam emittance and bunch length:
 - → $\epsilon_x = 0.71 \text{ nm}, \epsilon_y = 1.9 \text{ pm}, \sigma_z = 15.5 \text{ mm}$
 - Cumulative loss over 500 turns is ~1%, check in detail:
 - The full aperture and collimator model, worse DA and MA due to inclusion of the collimation insertion optics likely play a role

Needs to be understood and corrected in the future

DA and MA with collimation insertion optics

FCC-ee Z-mode spent beam losses

- Lost particles accumulated to obtain loss maps
- The loss maps are scaled to the **combined nominal beam lifetime** from lattice, SR, beamstrahlung and luminosity
- Losses intercepted by betatron collimators in PF (43%)
- Large losses on the TCR.V.C0 collimators in IPD, IPA and IPJ with no losses in IPG
 - Up to 3.1 kW on a vertical SR collimator (TCR.V.C0)
 - > Likely single-pass losses that cannot be intercepted by the halo collimation system in PF

Lifetime for the Z mode, <u>K. Oide talk</u>

Lifetime (q + BS + lattice)

Total loss power: 15 kW

[sec]

10000

G. Broggi | Including beam-beam effects in collimation studies for the FCC-ee ¹³

• Tertiary collimators (TCTs) for local protection ?

Introduction

- Collimation for the FCC-ee
- FCC-ee collimation system
- Collimation and beam-beam effects
- FCC-ee collimation simulations
- FCC-ee Z mode spent beam losses
- Addition of tertiary collimators for local protection
- Summary and next steps

Tertiary collimators for local protection

- Spent-beam losses shows the highest beam losses on SR collimators upstream of the IPs
- Addition of two (H+V) tertiary collimators (TCTs) for local protection
 - Placed ~690 m (H) ~420 m (V) upstream of each IP
 - s-location optimized to have optimal phase-advance (multiple of π) between TCTs and -
- Collimator settings adjusted to fit the TCTs in the collimation hierarchy:

Plane	Name	Length [cm]	Length [cm]	Gap [σ]	Gap [mm]
н	TCT.H.B1	25	25	13	3.4
V	TCT.V.B1	25	25	80	6.1

SR collimators aperture bottlenecks

Collimation performance with beam-beam and TCTs

Addition of TCTs suppresses by one order of magnitude the power loads on the SR collimators

Introduction

- Collimation for the FCC-ee
- FCC-ee collimation system
- Collimation and beam-beam effects
- FCC-ee collimation simulations
- FCC-ee Z mode spent beam losses
- Addition of tertiary collimators for local protection
- Summary and next steps

Summary

- First integrated beam-beam and collimation studies performed
 - Spent beam losses for the FCC-ee Z-mode
 - > Demonstrate the feasibility of combining collimation and beam-beam studies in the same model
 - Important input for the optimization of the FCC-ee collimation system design
- Spent beam losses show the highest power loads on the SR collimators upstream of the IPs
 - > Tertiary beam halo collimators (TCTs) for local protection included in the FCC-ee collimation system
 - Integrated beam-beam and collimation simulations show their effectiveness in suppressing the power loads on the SR collimators: <u>suppression of up to one order of magnitude</u>

Next steps

- Lifetime from integrated beam-beam and collimation simulations cannot be estimated yet
 - > Need to optimize DA and MA with collimation insertion optics and full aperture and collimator model
- The need for shower absorbers downstream of the TCTs needs to be assessed
- Investigate further particle distr. after beam-beam interactions physics debris collimators like in the LHC ?
- Iterate the collimation system design with other studies (SR backgrounds, impedance, energy deposition, radiation studies, mechanical design, ...)

05/09/2024

20

FCC-ee aperture

- Closed orbit tolerance: 250 µm
- Maximum beta-beating: 10%

Aperture bottleneck for Z operation mode

