Luminosity Tuning and Optimization Using Luminometer, Beamstrahlung, and Vertex Detector

<u>Vaibhavi Gawas</u>, Frank Zimmermann, With inputs from John Salvesen, Christian Carli, Andrea Ciarma, FCCee Beam-Beam Group

<u>Outline</u>

- Introduction
- Observables
- IP Tolerances

- Luminosity
- Beamstrahlung
- Pair Production

- Guinea-Pig vs X-suite
- Next Steps

Introduction

Observables

- Luminometer: Luminosity
- Beamstrahlung monitor: Photon Power
- Vertex detector: Pair production

Monitor the variations in above quantities and their observables for luminosity tuning with respect to three IP tolerances

IP Spot Size Tolerances

- Consequence of horizontally/vertically displaced sextupoles, displaced quadrupoles, change in quadrupole strength, or rolls of bending magnets and quadrupoles
- Causes an increase in IP spot size, affects the overall luminosity, beamstrahlung emission, and pair production

Measurements

- Luminometer: Luminosity measurements varying waist-shifts, vertical-dispersion, and skew coupling Put initial luminosity-based constraints on IP aberrations
- Beamstrahlung monitor: Photon Power
- Vertex detector: Pair production

Luminosity and Waist-Shifts

- · Forward waist-shift in FCCee-Z shows increased luminosity
- The effect for FCCee-*tt* is 'opposite'
- $\sigma_{z,BS}$ for FCCee-Z: 15.5mm, while for FCCee- $t\bar{t}$: 2.33mm

Luminosity and Waist-Shifts

- In linear colliders, travelling waist effects focus the beam 'ahead of the collision point'
- The effect in FCCee- $t\bar{t}$ could be due to strong focusing forced by short bunch length and high bunch density

Luminosity: Dispersion and Coupling

Vertical Dispersion

- Symmetric reduction in luminosity for -ve, +ve values of dispersion
- Dispersion to be ideally contained within 50 μm

Skew Coupling

- Luminosity drops drastically for coupling ($a \sim 0.004$)
- Largely impacts FCCee-tt

Measurements

- · Luminometer: Luminosity measurements
- Beamstrahlung: Photon Power with varying waist-shifts, vertical-dispersion, and skew coupling expected power output, requirements for beamstrahlung monitor
- Vertex detector: Pair production

Beamstrahlung

- Beamstrahlung is a direct consequence of beam-beam interactions: diagnostic tool for understanding IP beam dynamics
- Noticeable variations in BS power output with IP tolerances
- IP tolerances increases BS power, leads to a direct decrease in luminosity and increase in machine backgrounds

R2024

DE GENÈVE

Previous Measurements

SLC

- Transverse sizes of e+/e- beam: Analysis of BS energy patterns
- IP steering: Angular shift in centre of BS distribution (gamma region)
- Beam size variation: Visible(light) beamstrahlung at fixed angle

CESR and EIC studies

- Moments of beam distribution: From polarization data of BS photons
- Monitoring beam position and size: BS polarization and spectra

SuperKEKB

- Beam length and collision timing: BS time profile
- Relative height of beams, vertical offsets: Polarization observables (ratios)
- Information about IP geometry: Angular scans

Beamstrahlung: waist shift at $t\bar{t}$

FCCee- $t\bar{t}$

• Higher waist shifts increase power emission

Beamstrahlung: dispersion at $t\bar{t}$

FCCee- $t\bar{t}$

- vertical dispersion leads to drastic changes in emitted power
- all four power observables can be exploited

Beamstrahlung: waist shift at Z

FCCee-Z

- BS power of a beam goes up there is waist shift
- while it goes down when the opposite beam has a waist-shift
- Power difference: better observable than total power for waist-shift

Beamstrahlung: dispersion at Z

FCCee-Z

- Qualitatively behaves similar to waist shift
- Quantitatively- the change is much larger

Measurements

- Luminometer: Luminosity
- Beamstrahlung monitor: Photon Power
- Vertex detector: Pair production with varying waist-shifts, vertical-dispersion, and skew coupling utilising measured machine backgrounds within detector limits

Pair Production

Pair production is a 'secondary' effect of Beamstrahlung- beam-beam field creates e+e- pairs from energetic BS photons

Beamstrahlung photons produce e+e- pairs via 3 major processes:

 Interaction of two BS photons

- Interaction of BS photon with EM field of an electron
- EM interaction involving virtual photons

e⁺

Breit-Wheeler

beamstrahlung γ

beamstrahlung y

beamstrahlung y

 \sim

virtual y

Detector backgrounds: waist shift

UNIVERSITÉ

DE GENÈVE

FUTURE

R2024

- waist-shifts of 500um at Z-working points produces more pairs than 1000um (expected)
- Unusual reverse effect at the $t\bar{t}$ working point is seen
- Some unequal count of e+,e-: particles out of grid?

*normalized counts over 100 BXs

Detector backgrounds: coupling

DE GENÈVE

FUTURE

COLLIDER

RR2024

- skew coupling has minimal effect on pair production at Z-working point
- Minimum pair production at increased beam overlap

normalized counts over 100 BXs. $y^ \rightarrow y^* + ax^*$

Benchmarking X-Suite: waist shifts

• Shift in the peak luminosity (forward for Z, and backwards for $t\bar{t}$ is not reproduced in Xsuite strong-strong simulations.

Benchmarking X-Suite: coupling

- coupling effects on beamstrahlung power are well reproduced for single turn in Xsuite
- except for a slight uncertainty in positron beam power and power difference

$$y^*
ightarrow y^* + a x^*$$

Next Steps

• Xsuite PIC solver simulations, and multiturn sims

(reproduce waist-shift effects etc)

- Pair production in Xsuite for detector background studies
- Measurable detector background (hit occupancies), kinematics within detector limits
- Integrating the observables into machine learning baseddata acquisition framework

Thank You!

FCCee Beam-Beam-Team

Additional Slides and Backups

FCC-ee collider parameters as of July 30, 2023.					
Beam energy	[GeV]	45.6	80	120	182.5
Layout		PA31-3.0			
# of IPs		4			
Circumference	[km]	90.658816			
Bend. radius of arc dipole	[km]	10.021			
Energy loss / turn	[GeV]	0.0391	0.374	1.88	10.29
SR power / beam	[MW]	50			
Beam current	[mA]	1279	137	26.7	4.9
Colliding bunches / beam		11200	1780	380	56
Colliding bunch population	[10 ¹¹]	2.14	1.45	1.32	1.64
Hor. emittance at collision ε_x	[nm]	0.71	2.17	0.67	1.57
Ver. emittance at collision ε_y	[pm]	1.9	2.2	1.0	1.6
Lattice ver. emittance $\varepsilon_{y,lattice}$	[pm]	0.85	1.25	0.65	1.1
Arc cell		Long 90/90 90/90			
Momentum compaction α_p	$[10^{-6}]$	28.6 7.4			
Arc sext families		7	5	146	
$\beta_{x/y}^*$	[mm]	110 / 0.7	220 / 1	240 / 1	800 / 1.5
Transverse tunes $Q_{x/y}$		218.158 / 222.200	218.186 / 222.220	398.192 / 398.360	398.148 / 398.216
Chromaticities $Q'_{\pi/n}$		0 / +5	0/+2	0/0	0/0
Energy spread (SR/BS) σ_{δ}	[%]	0.039 / 0.109	0.070 / 0.109	0.103 / 0.152	0.159 / 0.201
Bunch length (SR/BS) σ_z	[mm]	5.60 / 15.5	3.46 / 5.09	3.40 / 5.09	1.85 / 2.33
RF voltage 400/800 MHz	GV	0.079 / 0	1.00 / 0	2.08 / 0	2.1 / 9.38
Harm. number for 400 MHz		121200			
RF frequency (400 MHz)	MHz	400.786684			
Synchrotron tune Q_s		0.0288	0.081	0.032	0.089
Long. damping time	[turns]	1158	219	64	18.3
RF acceptance	[%]	1.05	1.15	1.8	3.1
Energy acceptance (DA)	[%]	± 1.0	± 1.0	± 1.6	-2.8/+2.5
Beam crossing angle at IP	[mrad]	±15			
Crab waist ratio	[%]	70	55	50	40
Beam-beam ξ_x / ξ_y^a		0.0022 / 0.097	0.013 / 0.128	0.010 / 0.088	0.066 / 0.144
Piwinski angle $(\theta_x \sigma_{z,BS})/\sigma_x^*$		26.4	3.7	5.4	0.99
Lifetime $(q + BS + lattice)$	[sec]	10000	4000	3500	3000
Lifetime (lum) ^o	[sec]	1330	970	660	650
Luminosity / IP	$[10^{34}/cm^2s]$	141	20	6.3	1.38
Luminosity / IP (CDR)	$[10^{34}/cm^2s]$	230	28	8.5	1.8

"incl. hourglass.

^bonly the energy acceptance is taken into account for the cross section

Luminosity: coupling at Z

Luminosity: coupling at $t\bar{t}$

Beamstrahlung: coupling at Z and $t\bar{t}$

 $y^*
ightarrow y^* + a x^*$ *mean power over five repeats

Detector backgrounds: dispersion

 Peak energy count decrease with non-zero vertical dispersion (as the number of pairs produced also decrease)

 +ve, -ve dispersion values behaves similarly, the combined effect of energy spread and -ve,+ve dispersion changes beam-size in same manner

