Machine Learning applications to Improving RHIC luminosity

Xiaofeng Gu

Collaborators:

- MSU: Yue Hao, Will Fung
- LBNL: Ji Qiang, Sherry Li, Yi-Kai Kan, Yang Liu
- BNL: Xiaofeng Gu, Robert-Demolaize, Takeshi Kanesue, Lucy Lin, Kevin Brown

Sep 2 – 5, 2024 EPFL

ICFA mini workshop: Beam-Beam Effects in Circular Colliders BB24

1) Motivation and Methods

- 2) EBIS Beam Intensity Optimization
- 3) Luminosity Optimization
- 4) Plan & Summary

1) RHIC Complex Beam Optimization Intensity, e

Intensity, emittance and polarization

1) sPHENIX luminosity Optimization (RHIC)

$$L = \frac{N_1 N_2 f H}{2\pi \sqrt{\sigma_{x1}^2 + \sigma_{x2}^2} \sqrt{\sigma_{y2}^2 + \sigma_{y2}^2}}$$

- Global Parameters:
- 1. Orbit (Dipole)
- 2. Tune (Quadrupole),
- 3. Chromaticity (Sextuple)
- 4. Octupole
- Local (IR8) Parameters:
- 1. Beta* (beam size)
- 2. S* (longitudinal beam waist)
- 3. Transverse offset
- Other Parameters:
- 1. RF Voltage
- 2. Collimator Position

- sPHENIX:
- 1. max. MVTX (+/-10 cm)
- 2. min. unwanted signal
- 3. Crossing angle (2mrad)

- 1. Many variables;
- 2. Maximize the useful signal within VTX while minimize the unwanted signal outside of VTX
- 3. Machine learning could be a good tool for a fast, multi-objects tunning.
- 4. GPTune will be used for ONLINE optimization, XGBoost for offline analysis.

1) Bayesian optimization at LBNL GPTune

Several features of GPTune (BLNL) are very useful, including:

- (1) relies on dynamic process management for running applications with varying core counts and GPUs
- (2) can incorporate coarse performance models to improve the surrogate model
- (3) allows multi-objective tuning such as tuning a hybrid of computation, memory and communication.
- (4) allows multi-fidelity tuning to better utilize the limited resource budget
- (5) supports checkpoints and reuse of historical performance database.

https://github.com/gptune/

- 1. Many variables;
- 2. Maximize the useful signal within VTX while minimize the unwanted signal outside of VTX.

1) Bayesian optimization at SLAC

•optimization algorithms:

•cnsga Continuous NSGA (nondominated sorting genetic algorithm)-II with constraints.

•bayesian_optimization Single objective Bayesian optimization (w/ or w/o constraints, serial or parallel).

•mobo Multi-objective Bayesian optimization (w/ or w/o constraints, serial or parallel).

•bayesian_exploration Bayesian exploration.

•sampling algorithms: •random sampler

•Convenient YAML/JSON based input format.

•Driver programs:

•xopt.mpi.run Parallel MPI execution using this input format.

https://github.com/ChristopherMayes/Xopt

https://christophermayes.github.io/Xopt/assets/xopt_overview.pdf

Example Application: LCLS FEL Power Characterization

SLAC

SLAC

- **Proximal biasing** to reduce exploration step size and **constraints** to prevent charge loss.
- Custom evaluate function captures 80th percentile FEL power over 100 shots.
- Data stored in Pandas DataFrame objects, exported to text file with Xopt configuration
- FEL sensitivity is captured in the GP model lengthscales inside the generator object.
- Entirely executed from an interactive Jupyter notebook.

Simulated Photoinjector Optimization

- 10 optimization runs
- 20 initial points each
- Peak hypervolume using < 500 observations (NSGA-II ~ 17.5k) factor of 35x speedup, tuned in < 45 mins!

Roussel et. Al. PRAB 2021

https://arxiv.org/pdf/2312.05667

1) XGBoost for offline regression, SHAP for plotting

XGBoost python package:

- Multi-dimensions nonlinear regression algorithm: good for f(x1,x2,x3, ..., xn) with n>3 or 4. (Higgs Machine Learning Challenge)
- The black-box model (LEReC data): 80% data for training, 20% data for test and comparison
- Model R_2 score: 0.90, predicts the luminosity very well.
- How to explanate the black-box model?

SHAP python package:

- an approach to explain the output of any machine learning black-box model via calculating their Shapley values (marginal effect), which are their contributions to the total performance.
- Taxi: A[\$6] B[\$16] C[\$42] Pay: \$2 \$5 \$35
- SHAP plot: Data visualization, and model explainability; Shapley values with offsets.

Outline:

1) Motivation and Methods

2) RHIC Complex Beam Optimization

3) Luminosity Optimization

4) Plan & Summary

2) GPTune Test: EBIS Intensity Optimization

- 1. LION
- 2. EBIS Injection Line (fc96)
- 3. EBIS
- 4. EBIS Extraction line (xf14)
- 5. RFQ
- 6. MEBT
- 7. Linac
- 8. HEBT

		Injection [fc96]	Extraction [xf14]
1	IonLens20-40kV	✓	\checkmark
2	DeflPlatBias	✓	✓
3	16PoleX	✓	✓
4	16PoleY	✓	✓
5	Gridded_Lens	✓	✓
6	Horiz_Bend_Defl	✓	✓
7	Inter_Vert_Defl	✓	\checkmark
8	Inter_Vert_Defl_Lower	✓	✓
9	Horiz_Sphere_Bend	✓	×
10	RFQ_Horiz_Bend	×	\checkmark
11	LEBT_Solenoid	×	\checkmark
	Total Variables	9	10

2) GPTune: EBIS Injection Line (9 parameters)

script was running from 12:33 to 13:36 (~63 min)

- 1 beam / supercycle [6.6 s]; it takes 2 supercycles for the powers settle down;4 supercycles for measurement.
- fc96 measurement was used for injection optimization
- 9 control parameters after 70 iterations

2) GPTune: EBIS Extraction Line (10 parameters)

- script was running from 10:18 to 11:15 (~57 min)
- 2 beam / supercycle [6.6 s].
- xf14 measurement was used for extraction optimization.
- 10 control parameters after 60 iterations

2) GPTune: EBIS Intensity Gain (11/25/2023)

Device	Orignal	Ext	Gain from Ext	Ext+Inj	Gain from Ext+Inj
xf14 [uVs]	1.48±0.13	2.23±0.17	42 %	2.53±0.20/2.49±0.24	68-71 %
fc96[uVs]	11.22±1.05	12.16±1.23	8.4 %	13.67±1.40/13.89±1.76	22-24 %

- Original, Ext., Inj. + Ext.: use the saved parameters for these beam lines.
- GPTune works with std ±10% (pp ±15%) noisy signals!
- Possible more gain with fc96 instead of xf14 for the extraction line?

2) GPTune: EBIS Injection + Extraction (19 parameters)

- Continue to optimize the total 19 parameters simultaneously AFTER optimizing the injection and extraction separately.
- Fc96 was used. After optimization, the results were compared via reversing their corresponding settings.
- Original setting: 22 [uVs]
- 80-iterations setting: 23 [uVs]
- 90-iterations setting: 23.56 [uVs] (7%)
- 1.07×1.22 ~ 1.30 ?

2) Offline XGBoost Model and Important Features

Motivations (guide operation):

- 1. Find some most important parameters
- 2. Find their operation range.
- 3. Explore different operation region.

XGBoost python package:

- Multi-dimensions nonlinear regression algorithm: good for f(x1,x2,x3, ..., xn) with n>3 or 4. (Higgs Machine Learning Challenge)
- The black-box model: 80% data for training, 20% data for test and comparison
- How to explanate the black-box model?

SHAP python package:

- an approach to explain the output of any machine learning black-box model via calculating their Shapley values (marginal effect), which are their contributions to the total luminosity.
- Separate the individual effect.

The models achieved scores of 79% and 80% for the injection and extraction beam lines.

2) SHAP Plot: Prediction for Operation Range

Fig. 13: The prediction plots for 16PoleX (top) and 16PoleY (bottom) in the injection line.

Fig. 14: The prediction plot for Inter-Vert-Defl-Lower (top) and Horiz-Bend-Defl (bottom) in the extraction line.

2) Xopt: Linac to Booster

- Booster injection process sets maximum beam brightness for rest of acceleration through RHIC
- Known emittance effect on polarization loss
- Intentional horizontal and vertical scraping reduce emittance to RHIC requirements
- Goal: minimize emittance / maximize beam intensity after scraping
- Controls: Linac to Booster (LtB) transfer line optics
- Method: Bayesian optimization (BO)

2) Xopt: Linac to Booster (03/04/2024)

- Controls: Power supply currents of 2 correctors and 2 quadrupoles at the end of the LtB line
- Beam size decrease in both planes in the BtA line in correspondence with intensity increase

1e11

Outline:

1) Motivation and Methods

- Motivation
- Methods
- 2) RHIC Complex Beam Optimization
 - EBIS (GPTune)
 - LTB (Xopt)
- 3) Luminosity Optimization
 - LEReC (XGBoost)
 - sPHINEX (GPTune)
- 4) Plan & Summary

3) RHIC Parameters and LEReC Parameters

 Table 1: Parameters and Their Abbreviations

RHIC		LEReC	
Parameters	Abbreviations	Parameters	Abbreviations
Intensity B	IntenB	Electron BPM B Cooling	ebpmB
Intensity Y	IntenY	Electron BPM Y Cooling	ebpmY
Emittance B	SizeB	Ion BPM B	ibpmB
Emittance Y	SizeY	Ion BPM Y	ibpmY
Tune B H	TuneBH	Solenoid 1 B	Bsol1
Tune B V	TuneBV	Solenoid 1 B	$\operatorname{Bsol1}$
Tune Y H	TuneYH	Electron Beam Current	Current
Tune Y V	TuneYV	Electron Beam Energy	Energy
Chrom B H	ChromBH	B Y Quadrupole Current	BYquad
Chrom B V	ChromBV		
Chrom Y H	ChromYH	26 input parameter	
Chrom Y V	ChromYV	26 input parameters	
Collimator BH	CollBH	1 output parameter	
Collimator BV	CollBV	Trigger rate [Ha]	
Collimator YH	CollYH	Trigger rate [Hz]	
Collimator YV	CollYV		
Beta* Squeeze Ramp	Ramp		
Luminosity	Lumi		

3) Luminosity as function of parameters

- 1. No clear message for most parameters. Their contributions the Lumi are mixed.
- 2. To decouple the correlation or separate the effects from each other.
- 3. Machine learning may help.

3) Validated XGBooster Model with 2020 Run data

Fig. 13: The SHAP values plots for the ion beam intensity [1E9] and beam size [um] (emittance).

It makes sense now (within the existing data range).

3) Offline Evaluate 2021 Operation data with XGBoost

1. Intensity: IntenY ~ 5 Hz, IntenB ~ 2 Hz; higher blue beam loss?

- 2. Current: 1 Hz, more data points (6A) to confirm the optimized value.
- 3. TuneYH and TuneBV

3) GPTune Luminosity Optimization-Analytical Model

$\beta_{x,y}$ and σ_z	[0.1, 1]m
ϕ	[0,5] mrad

The value of the objective function is minimized.

3) GPTune Luminosity Optimization-Simulation

The optimization of the lattice setting with respect to the luminosity is performed for the head-on collision of two Au-Au beams in the Relativistic Heavy Ion Collider (RHIC). The parameters of the lattice setting with only two variables ΔS_x and ΔS_y .

The value of the objective function converges when more optimization steps are executed. This implies the value of the objective function is minimized and hence the total luminosity L_t is maximized.

3) GPTune luminosity Optimization sPHENIX

- Global Parameters:
- 1. Orbit (Dipole)
- 2. Tune (Quadrupole),
- 3. Chromaticity (Sextuple)
- 4. Octupole
- Local (IR8) Parameters:
- 1. Beta* (beam size)
- 2. S* (longitudinal beam waist)
- 3. Transverse offset
- Other Parameters:
- 1. RF Voltage
- 2. Collimator Position
- sPHENIX (OFF):
- 1. max. MVTX (+/-10 cm)
- 2. min. unwanted signal
- 3. Crossing angle (2mrad)
- 4. ZDC rate

S* and beta* changing scripts: 2023

- change the target s*, beta* within 'deltas.dat' file;
- run 'madx job.madx' command, will get 'IP8knob.dat' file;
- 3. run 'CreateSend.IP8' command, will get 'SendTrim.IP8' file;
- 4. run 'SendTrim.IP8' command.

GPTune: 2023

- 1. Installed and tested
- Did some optimizations EBIS and got some good results.

Optimization Loop: May, 2024

3) The First sPhenix ZDC GPTune Optimization 05/16/2024

- S*: +/-0.5 m without decay compensation
- S*: +/-0.5 m; +/-0.1 m.
- S*(x plane): 0.74-0.76m; 0.8m->0.4m->0m->-0.4m >-0.8m.
- S* > 0.8 m, MADX didn't find solutions.
- Beam loss is acceptable.
- ZDC rate was changed. Didn't see any visible improvement with ± 10% pp noise.
- With +/- 0.8m, it is expected 17% change for ZDC rate.
- GPTune works with std ±10% (pp) noisy signals ±15%!

3) Reasons and Plan for Luminosity Optimization

• S* control:

Base line: $s^*x = 1.19m, s^*y = 0.67m$ Move $s^*x \rightarrow -0.5m$: $s^*x = 1.14m, s^*y = 0.01$ Move $s^*x \rightarrow -0.5m$: $s^*x = 0.74m, s^*y = 0.35$

- **S* Measurement:** lattice and real machine
- Magnet hysteresis: Same current can have different field (up or down ramp)
- Too large beam size: the emittance was 3~4 higher than nominal.
- **Optimal S* already:** is very closed to its optimal and don't need to do anything!
- More than 20 times luminosity now.

1. S* measurement to confirm

- 2. Using Power supplies instead of S*
- 3. Control Power supplies only ramp to one direction
- 4. Improve Emittance: Done
- 5. Explore other control parameters?
- 6. Optimize Luminosity vs Reduce background?
- 7. sPHENIX detector or MVTX signal were OFF.

8. Orbit Tune feedback

- Global Parameters:
- 1. Orbit (Dipole)
- 2. Tune (Quadrupole),
- 3. Chromaticity (Sextuple)
- 4. Octupole
- Local (IR8) Parameters:
- 1. Beta* (beam size)
- 2. S* (longitudinal beam waist)
- 3. Transverse offset
- Other Parameters:
- 1. RF Voltage
- 2. Collimator Position

1) Motivation

- 2) EBIS Intensity Optimization
- 3) Luminosity Optimization
- 4) Plan & Summary

4) Plan

- 1. AGS injection
- 2. NSRL: target beam line
- 3. Proton Beam Source: OPPIS
- 4. Tandem beam line
- 5. RHIC coupling
- 6. Machine anomaly detection

4) Summary

- GPTune was used for EBIS intensity optimization and got 22~30% intensity improvement at xf14 CT (70% with fc96 CT), with ±10% std noisy signals and 19 variables.
- 2. Xopt has been used for LTB and can optimize beam size and intensity at the same time
- 3. The luminosity optimization with sPHENIX ZDC has been carried out for the first time. More APEX time is required to confirm the results or optimize the integral luminosity with more/different parameters.
- 4. GPTune/Xopt has been demonstrated as a powerful tool for optimization. It is planned to be used for other beam lines (intensity, emittance and polarization) optimization in RHIC complex.
- 5. XGBoost is a good tool for offline machine optimization.

Acknowledgement

- R. Guillaume
- T. Kanesue
- M. Okamura
- J. Morris
- Greg